Preview

Modeling and Analysis of Information Systems

Advanced search

On the Root-Class Residuallity of Generalized Free Products

https://doi.org/10.18255/1818-1015-2013-1-133-137

Abstract

Let K be a root class of groups. It is proved that a free product of any family of residually K groups with one amalgamated subgroup, which is a retract in all free factors, is residually K. The sufficient condition for a generalized free product of two groups to be residually K is also obtained, provided that the amalgamated subgroup is normal in one of the free factors and is a retract in another.

About the Author

E. A. Tumanova
Ivanovo State University
Russian Federation

аспирант кафедры алгебры и математической логики,

ul. Ermaka, 39, Ivanovo, 153025 Russia



References

1. Bobrovskii P. A., Sokolov E. V. The cyclic subgroup separability of certain generalized free products of two groups // Algebra Colloquium. 2010. V. 17, № 4. P. 577 – 582.

2. Boler J., Evans B. The free product of residually finite groups amalgamated along retracts is residually finite // Proc. Amer. Math. Soc. 1973. V. 37. № 1. P. 50 – 52.

3. Grunberg K. W. Residual properties of infinite soluble groups // Proc. Lond. Math. Soc. 1957. V. 7. P. 29 – 62.

4. Neumann B. H. An assay on free products of groups with amalgamations // Phil. Trans. Royal Soc. of London. 1954. V. 246. P. 503 – 554.

5. Азаров Д. Н., Туманова Е. А. Об аппроксимируемости обобщенных свободных произведений групп корневыми классами // Научные труды Иван. гос. ун-та. Математика. 2008. Вып. 6. С. 29 – 42. (Azarov D. N., Tumanova E. A. Ob approksimiruyemosti obobshchennykh svobodnykh proizvedeniy grupp kornevymi klassami // Nauchnyye trudy Ivan. gos. un-ta. Matematika. 2008. Vyp. 6. P. 29 – 42 [in Russian].)


Review

For citations:


Tumanova E.A. On the Root-Class Residuallity of Generalized Free Products. Modeling and Analysis of Information Systems. 2013;20(1):133-137. (In Russ.) https://doi.org/10.18255/1818-1015-2013-1-133-137

Views: 853


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)