Preview

Modeling and Analysis of Information Systems

Advanced search

Dissipative Structures of the Kuramoto–Sivashinsky Equation

https://doi.org/10.18255/1818-1015-2015-1-105-113

Abstract

In the present work, we study the features of dissipative structures formation described by the periodic boundary value problem for the Kuramoto-Sivashinsky equation. The numerical algorithm which is based on the pseudospectral method is presented. We prove the efficiency and accuracy of the proposed numerical method on the exact solution of the equation considered. Using this approach, we performed the numerical simulation of dissipative structure formations described by the Kuramoto–Sivashinsky equation. The influence of the problem parameters on these processes are studied. The quantitative and qualitative characteristics of dissipative structure formations are described. We have shown that there is a value of the control parameter at which the processes of dissipative structure formation are observed. In particular, using the cyclic convolution we define the average value of this parameter. Also, we find the dependence of the amplitude of the structures on the value of control parameter.

About the Authors

N. A. Kudryashov
National Research Nuclear University MEPhI
Russian Federation

доктор физ.-мат. наук, профессор, зав. кафедрой,

Kashirskoe shosse, 31, Moscow, 115409, Russia



P. N. Ryabov
National Research Nuclear University MEPhI
Russian Federation

кандидат физ.-мат. наук, ст. преподаватель,

Kashirskoe shosse, 31, Moscow, 115409, Russia



B. A. Petrov
National Research Nuclear University MEPhI
Russian Federation

студент,

Kashirskoe shosse, 31, Moscow, 115409, Russia



References

1. Kuramoto Y., Tsuzuki T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium // Progress.Theor. Phys. 1976. V. 55. No 2. P. 356–359.

2. Sivashinsky G. I. Instability, pattern formation and turbulence in flames // Ann. Rev. Fluid Mech. 1983. V. 15. P. 179–199.

3. Kudryashov N.A., Ryabov P.N., Fedyanin T.E., Kutukov A.A. Evolution of pattern formation under ion bombardment of substrate // Physics Letters A. 2013. V. 377. P. 753–759.

4. Topper J., Kawahara T. Approximate equations for long nonlinear waves on a viscous fluid//J. Phys. Soc. Japan. 1978. V. 44. No. 2. P. 663–666.

5. Кудряшов Н.А. Точные солитонные решения обобщенного эволюционного уравнения волновой динамики // Прикладная математика и механика. 1988. T. 52. №3. С. 465–470. [English transl.: Kudryashov N.A. Exact soliton solutions of the generalized evolution equation of wave dynamics// J. Appl. Math. Mech. 1988. V. 52. P. 361–365.]

6. Kudryashov N.A. Exact solutions of the generalized Kuramoto–Sivashinsky equation // Phys. Letters A. 1990. V. 147. № 5–6. P. 287–291.

7. Алексеев А.А., Кудряшов Н.А. Особенности нелинейных волн в диссипативно–дисперсионных средах с неустойчивостью // Изв. АН СССР. МЖГ. 1990. № 4. C. 130–136. [English transl.: Alekseev A.A., Kudryashov N.A. Properties of nonlinear waves in dissipative-dispersive media with instability // Fluid Dynamics. 1990. V. 25. No. 4. P. 604–610.]

8. Кудряшов Н.А., Мигита А.В. Периодические структуры, возникающие при учете дисперсии в одной из моделей турбулентности // Изв. РАН. МЖГ. 2007. № 3. C. 145–154. [English transl.: Kudryashov N.A., Migita A.V. Periodic structures developing with account for dispersion in a turbulence model // Fluid Dynamics. 2007. V. 42. No. 3. P. 463–471.]

9. Кудряшов Н.А., Рябов П.Н. Cвойства нелинейных волн в активно-диссипативной дисперсионной среде // Изв. РАН. МЖГ. 2011. No. 3. P. 97–105. [English transl.: Kudryashov N.A., Ryabov P.N. Properties of nonlinear waves in an active–dissipative dispersive medium // Fluid Dynamics. 2011. V. 46. No. 3. P. 425–432.]

10. Kudryshov N.A., Ryabov P.N., Sinelshchikov D.I. Nonlinear waves in media with fifth order dispersion // Physics Letters A. 2011. V. 375. P. 2051–2055.

11. Trefethen L.N. Spectral Methods in MATLAB. SIAM, Philadelphia, 2000.

12. Hou T.Y., Li R. Computing nearly singular solutions using pseudo-spectral methods // Journal of Computational Physics. 2007. 226. P. 279–297.

13. Hala A. Numerical methods for stiff systems. University of Nottingham, 2008.

14. Kassam A.-K., Trefethen L.N. Fourth-order time-stepping for stiff PDEs // SIAM J. Sci. Comput. 2005. Vol. 26. No. 4. P. 1214–1233.

15. Boyd J.P. Chebyshev and Fourier Spectral Methods. DOVER Publications, Inc. Mineola, New York, 2000.


Review

For citations:


Kudryashov N.A., Ryabov P.N., Petrov B.A. Dissipative Structures of the Kuramoto–Sivashinsky Equation. Modeling and Analysis of Information Systems. 2015;22(1):105-113. (In Russ.) https://doi.org/10.18255/1818-1015-2015-1-105-113

Views: 1471


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)