Preview

Modeling and Analysis of Information Systems

Advanced search

Residual Properties of Nilpotent Groups

https://doi.org/10.18255/1818-1015-2015-2-149-157

Abstract

Let π be a set of primes. Recall that a group G is said to be a residually finite π-group if for every nonidentity element a of G there exists a homomorphism of the group G onto some finite π-group such that the image of the element a differs from 1. A group G will be said to be a virtually residually finite π-group if it contains a finite index subgroup which is a residually finite π-group. Recall that an element g in G is said to be π-radicable if g is an m-th power of an element of G for every positive π-number m. Let N be a nilpotent group and let all power subgroups in N are finitely separable. It is proved that N is a residually finite π-group if and only if N has no nonidentity π-radicable elements. Suppose now that π does not coincide with the set Π of all primes. Let π 0 be the complement of π in the set Π. And let T be a π 0 component of N i.e. T be a set of all elements of N whose orders are finite π 0 -numbers. We prove that the following three statements are equivalent: (1) the group N is a virtually residually finite π-group; (2) the subgroup T is finite and quotient group N/T is a residually finite π-group; (3) the subgroup T is finite and T coincides with the set of all π-radicable elements of N.

About the Author

D. N. Azarov
Ivanovo State University
Russian Federation
канд. физ.-мат. наук, доцент, Ermaka str., 39, Ivanovo, 153025, Russia


References

1. Мальцев А. И., “Обобщённо нильпотентные алгебры и их присоединённые группы”, Мат. сб., 25:3 (1949), 347–366; [Malcev A. I., “Obobshchyonno nilpotentnye algebry i ikh prisoedinyonnye gruppy”, Mat. sb., 25:3 (1949), 347–366, (in Russian).]

2. Chandler B., Magnus W., The history of combinatorial group theory, Springer, 1982.

3. Мальцев А. И., “Об изоморфном представлении бесконечных групп матрицами”, Мат. сб., 8:3 (1940), 405–422; [Malcev A. I., “Ob izomorfnom predstavlenii beskonechnykh grupp matritsami”, Mat. sb., 8:3 (1940), 405–422, (in Russian).]

4. Hirsh K. A., “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85.

5. Learner A., “Residual properties of polycyclic groups”, J. Math., 8 (1964), 536–542.

6. Сексенбаев К., “К теории полициклических групп”, Алгебра и логика, 4:3 (1965), 79–83; [Seksenbaev K., “K teorii policiklicheskih grupp”, Algebra i logika, 4:3 (1965), 79–83, (in Russian).]

7. Шмелькин А. И., “Полициклические группы”, Сиб. мат. ж., 9 (1968), 234–235; [Smelkin A. L., “Politsiklicheskie gruppy”, Sib. mat. zh., 9 (1968), 234–235, (in Russian).]

8. Gruenberg K.W., “Residual properties of infinite soluble groups”, Proc. London Math. Soc., 3(7):25 (1957), 29–62.

9. Мальцев А. И., “О гомоморфизмах на конечные группы”, Учен. зап. Иван. гос. пед. ин-та, 18(5), 1958, 49–60; [Malcev A. I., “O gomomorfizmah na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18(5), 1958, 49–60, (in Russian).]

10. Азаров Д. Н., “Некоторые аппроксимационные свойства групп конечного ранга”, Модел. и анализ информ. систем, 21:2 (2014), 50–55; [Azarov D. N., “Some Residual Properties of Finite Rank Groups”, Modeling and Analysis of Information Systems, 21:2 (2014), 50–55, (in Russian).]

11. Мальцев А. И., “О группах конечного ранга”, Мат. сб., 22(2) (1948), 351–352; [Malcev A. I., “O gruppah konechnogo ranga”, Mat. sb., 22(2) (1948), 351–352, (in Russian).]

12. Азаров Д. Н., “Аппроксимируемость разрешимых групп конечного ранга некоторыми классами конечных групп”, Известия ВУЗов. Математ., 2014, № 8, 18–29; English transl.: Azarov D. N., “Approximability of finite rank soluble groups by certain classes of finite groups”, Mathematics (Iz. VUZ), 58:8 (2014), 15–23.

13. Lennox J., Wiegold C., “Converse of theorem of Mal’cev on nilpotent groups”, Math. Z., 139(1) (1974), 85–86.

14. Розов А. В., “О нильпотентных группах конечного ранга”, Математика и ее приложения. Журн. Иван. Мат. Общ., 1(9) (2012), 41; [Rozov A. V., “O nilpotentnykh gruppakh konechnogo ranga”, Matematika i ee prilozheniya. Zhurn. Ivan. Mat. Obshch., 1(9) (2012), 41, (in Russian).]

15. Азаров Д. Н., Васькова И. Г., “О финитной аппроксимируемости нильпотентных групп”, Учен. тр. ИвГУ. Математика, 6 (2008), 9–16; [Azarov D. N. Vaskova I. G., “O finitnoy approksimiruemosti nilpotentnykh grupp”, Uchen. tr. IvGU. Matematika, 6 (2008), 9–16, (in Russian).]

16. Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon press, Oxford., 2004.

17. Lubotzki. A., Mann A., “Residually finite groups of finite rank”, Math. Proc. Comb. Phil. Soc., 106(3) (1989), 385–388.

18. Азаров Д. Н., “Некоторые аппроксимационные свойства разрешимых групп конечного ранга”, Чебышевский сборник, 15, 2014, 7–18; [Azarov D. N., “Nekotorye approksimatsionnye svoystva razreshimykh grupp konechnogo ranga”, Chebyshevskiy sbornik, 15, 2014, 7–18, (in Russian).]

19. Азаров Д. Н., “О почти аппроксимируемости конечными р-группами некоторых разрешимых групп конечного ранга”, Вест. Иван. гос. ун-та, 2 (2011), 80–85; [Azarov D. N., “O pochti approksimiruemosti konechnymi p-gruppami nekotorykh razreshimykh grupp konechnogo ranga”, Vest. Ivan. gos. un-ta, 2 (2011), 80–85, (in Russian).]

20. Азаров Д. Н., “Об аппроксимируемости конечными р-группами групп конечного ранга”, Вест. Иван. гос. ун-та, 3 (2001), 103–105; [Azarov D. N., “Ob approksimiruemosti konechnymi p-gruppami grupp konechnogo ranga”, Vest. Ivan. gos. un-ta, 3 (2001), 103–105, (in Russian).]


Review

For citations:


Azarov D.N. Residual Properties of Nilpotent Groups. Modeling and Analysis of Information Systems. 2015;22(2):149-157. (In Russ.) https://doi.org/10.18255/1818-1015-2015-2-149-157

Views: 1116


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)