Preview

Modeling and Analysis of Information Systems

Advanced search

Uniformity of Vector Bundles of Finite Rank on Complete Intersections of Finite Codimension in a Linear ind-Grassmannian

https://doi.org/10.18255/1818-1015-2015-2-209-218

Abstract

A linear projective ind-variety X is called 1-connected if any two points on it can be connected by a chain of lines l1, l2, ..., lk in X, such that li intersects li+1. A linear projective ind-variety X is called 2-connected if any point of X lies on a projective line in X and for any two lines l and l 0 in X there is a chain of lines l = l1, l2, ..., lk = l 0 , such that any pair (li , li+1) is contained in a projective plane P 2 in X. In this work we study an ind-variety X that is a complete intersection in the linear ind-Grassmannian G = lim−→G(km, nm). By definition, X is an intersection of G with a finite number of ind-hypersufaces Yi = lim−→Yi,m, m ≥ 1, of fixed degrees di , i = 1, ..., l, in the space P∞, in which the ind-Grassmannian G is embedded by Pl¨ucker. One can deduce from work [17] that X is 1-connected. Generalising this result we prove that X is 2-connected. We deduce from this property that any vector bundle E of finite rank on X is uniform, i. e. the restriction of E to all projective lines in X has the same splitting type. The motiavtion of this work is to extend theorems of Barth - Van de Ven - Tjurin - Sato type to complete intersections of finite codimension in ind-Grassmannians.

About the Author

S. M. Yermakova
P.G. Demidov Yaroslavl State University
Russian Federation
Sovetskaya str., 14, Yaroslavl, 150000, Russia


References

1. Altman A. B., Kleiman S. L., “Foundations of the theory of Fano schemes”, Composito Math., 34:1 (1977), 3–47.

2. Barth W., Van de Ven A., “On the geometry in codimension 2 in Grassmann manifolds”, Lecture Notes in Math., 412 (1974), 1–35.

3. Birkhoff George David, “Singular points of ordinary linear differential equations”, Transactions of the American Mathematical Society, 10:4 (1909), 436–470.

4. Coandˇa I., Trautmann G., “The splitting criterion of Kempf and the Babylonian tower theorem”, Communications in Algebra, 34:7 (2006), 2485–2488.

5. Donin J., Penkov I., “Finite rank vector bundles on inductive limits of Grassmannians”, IMRN, 2003, № 34, 1871–1887.

6. Eisenbud D., Harris J., “3264 & All That Intersection. Theory in Algebraic Geometry”, 2013, http://isites.harvard.edu/fs/docs/icb.topic720403.files/book.pdf.

7. Griffiths P. A., Harris J., Principles of Algebraic Geometry, Wiley, New York, 1978.

8. Grothendieck Alexander, “Sur la classification des fibres holomorphes sur la sphere de Riemann”, American Journal of Mathematics, 79:1 (1957), 121–138.

9. Karen Smith, An invitation to algebraic geometry, Springer-Verlag, 2000.

10. Okonek C., Schneider M., Spindler H., Vector bundles on complex projective spaces, Progress in Mathematics 3, Birkhauser, Boston. Basel, Stuttgart, 1980.

11. Sato E., “On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties”, J. Math. Kyoto Univ., 1977, № 17, 127–150.

12. Penkov I., Tikhomirov A. S., “Linear ind-Grassmannians”, Pure and Applied Mathematics Quarterly, 10:2 (2014), 289–323.

13. Penkov I., Tikhomirov A. S., “On the Barth–Van de Ven–Tyurin–Sato theorem”, arXiv: 1405.3897[math.AG].

14. Penkov I., Tikhomirov A. S., “Rank-2 vector bundles on ind-Grassmannians”, Algebra, arithmetic,and geometry: in honor of Yu. I. Manin, V II, Progr. Math., 270 (2009), 555–572.

15. Tyurin A. N., “Vector bundles of finite rank over infinite varieties”, Math. USSR, 1976, № 10, 1187–1204.

16. Hartshorne R., Algebraic Geometry, Springer-Verlag, New York, 1977.

17. Ермакова С. М., “О пространстве путей на полных пересечениях в грассманианах”, Моделирование и анализ информационных систем, 21:4 (2014), 35–46; [Yermakova S. M., “On the variety of paths on complete intersections in Grassmannians”, Modeling and Analysis of Information Systems, 21:4 (2014), 35–46, (in Russian).]

18. Пенков И. Б., Тихомиров А. С., “Тривиальность векторных расслоений на скрученных инд-грассманианах”, Математический сборник, 202:1 (2011), 65–104; English transl.: Penkov I. B., Tikhomirov A. S., “Triviality of vector bundles on twisted indGrassmannians”, Sbornik: Mathematics, 202, 2011, 61–99.

19. Харрис Дж., Алгебраическая геометрия. Начальный курс, МЦНМО, Москва, 2006; English transl.: Harris J., Algebraic Geometry. A first course, MCCME, Moscow, 2006.

20. Шафаревич И. Р., Основы алгебраической геометрии, МЦНМО, Москва, 2007; English transl.: Shafarevich I. R., Foundations of Algebraic Geometry, MCCME, Moscow, 2007.


Review

For citations:


Yermakova S.M. Uniformity of Vector Bundles of Finite Rank on Complete Intersections of Finite Codimension in a Linear ind-Grassmannian. Modeling and Analysis of Information Systems. 2015;22(2):209-218. (In Russ.) https://doi.org/10.18255/1818-1015-2015-2-209-218

Views: 1007


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)