Preview

Modeling and Analysis of Information Systems

Advanced search

The Existence of Triple Factorizations for Sporadic Groups of Rank 3

https://doi.org/10.18255/1818-1015-2015-2-219-237

Abstract

A finite group G with proper subgroups A and B has triple factorization G = ABA if every element g of G can be represented as g = aba0 , where a and a 0 are from A and b is from B. Such a triple factorization may be sometimes degenerate to AB-factorization. The task of finding triple factorizations for a group is fundamental and can be used for understanding the group structure. For instance, every simple finite group of Lie type has a natural factorization of such a type. Besides, the triple factorization is widely used in the study of graphs, geometries and varieties. The goal of this article is to find triple factorizations for sporadic groups of rank 3. We have proved the existence theorem of ABA-factorization for sporadic simple groups McL and F i22. There exist two rank 3 permutation representations of F i22. We have proved that ABA-factorizations exist in both cases.

About the Authors

L. S. Kazarin
P.G. Demidov Yaroslavl State University
Russian Federation
Sovetskaya str., 14, Yaroslavl, 150000, Russia


I. A. Rassadin
ООО «Нетис Телеком»
Russian Federation
исследователь


D. N. Sakharov
ООО «Агентство развития «4Р»
Russian Federation
исследователь


References

1. Загорин Д. Л., Казарин Л. С., “Абелевы ABA-факторизации конечных групп”, Докл. Акад. Наук, 347 (1996), 590–592; [Zagorin D. L., Kazarin L. S., “Abelevy ABAfaktorizacii konechnyh grupp”, Dokl. Akad. Nauk, 347 (1996), 590–592, (in Russian).]

2. Alavi S. H., Praeger C. E., “On triple factorizations of finite groups”, Journal of Group Theory, 14 (2010), 341–360.

3. Amberg B., Kazarin L. S., “ABA-groups with cyclic subgroup B”, Tr. IMM UrO RAN, 18:3 (2012), 10–22.

4. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., ATLAS of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985.

5. Giudici M., “Factorizations of sporadic simple groups”, Journal of Algebra, 304 (2006), 311–323.

6. Gorenstein D., Finite Simple Groups. An Introduction to Their Classification, Plenum Press New York and London, 1982.

7. Gorenstein D., “On finite groups of the form ABA”, Can. J. Math., 14 (1962), 195–236.

8. Gorenstein D., Herstein I. N., “A class of solvable groups”, Can. J. Math., 11 (1959), 311–320.

9. Guterman M., “On ABA-groups of finite order”, Trans. Amer. Math. Soc., 139 (1969), 109–143.

10. Wilson R., Walsh P., Tripp J., Suleiman I., Parker R., Norton S., Nickerson S., Linton S., Bray J., Abbott R., “ATLAS of Finite Group Representations – Version 3”, 2005, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

11. Wilson R., Walsh P., Tripp J., Suleiman I., Rogers S., Parker R., Norton S., Nickerson S., Linton S., Bray J., Abbott R., “ATLAS of Finite Group Representations – Version 2”, 1999, http://brauer.maths.qmul.ac.uk/Atlas/.

12. Sysak Ya. P., “Finite groups of the form ABA”, Algebra and Logic, 21:3 (1982), 234–241.

13. Струнков С. П., Введение в теорию линейных представлений конечных групп, МИФИ, 1993; [Strunkov S. P., Vvedenie v teoriju linejnyh predstavlenij konechnyh grupp, MIFI, 1993, (in Russian).]

14. Сысак Я. П., “Конечные ABA-группы с абелевой p-подгруппой A и циклической p-подгруппой B”, Группы и системы их подгрупп, 1983, 31–42; [Sysak Ja. P., “Konechnye ABA-gruppy s abelevoj p-podgruppoj A i ciklicheskoj p-podgruppoj B”, Gruppy i sistemy ih podgrupp, 1983, 31–42, (in Russian).]

15. Сысак Я. П., “О строении конечных ABA-групп с абелевой подгруппой A и циклической подгруппой B”, Строение групп и их подгрупповая организация, 1984, 33–46; [Sysak Ja. P., “O stroenii konechnyh ABA-grupp s abelevoj podgruppoj A i ciklicheskoj podgruppoj B”, Stroenie grupp i ih podgruppovaja organizacija, 1984, 33–46, (in Russian).]

16. Сысак Я. П., “Конечные ABA-группы с абелевыми р-подгруппами A и B”, Укр. Мат. Журн., 40:3 (1988), 356–361; [Sysak Ja. P., “Konechnye ABA-gruppy s abelevymi podgruppami A i B”, Ukr. Mat. Zhurn., 40:3 (1988), 356–361, (in Russian).]

17. Сыскин С. А., “Абстрактные свойства простых спорадических групп”, Успехи математических наук, 5(215) (1980), 181–212; [Syskin S. A., “Abstraktnye svojstva prostyh sporadicheskih grupp”, Uspehi matematicheskih nauk, 5(215) (1980), 181–212, (in Russian).]


Review

For citations:


Kazarin L.S., Rassadin I.A., Sakharov D.N. The Existence of Triple Factorizations for Sporadic Groups of Rank 3. Modeling and Analysis of Information Systems. 2015;22(2):219-237. (In Russ.) https://doi.org/10.18255/1818-1015-2015-2-219-237

Views: 1016


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)