Preview

Modeling and Analysis of Information Systems

Advanced search

Data Rate Estimation for Wireless Core-to-Cache Communication in Multicore CPUs

https://doi.org/10.18255/1818-1015-2015-2-238-247

Abstract

In this paper, a principal architecture of common purpose CPU and its main components are discussed, CPUs evolution is considered and drawbacks that prevent future CPU development are mentioned. Further, solutions proposed so far are addressed and a new CPU architecture is introduced. The proposed architecture is based on wireless cache access that enables a reliable interaction between cores in multicore CPUs using terahertz band, 0.1-10THz. The presented architecture addresses the scalability problem of existing processors and may potentially allow to scale them to tens of cores. As in-depth analysis of the applicability of the suggested architecture requires accurate prediction of traffic in current and next generations of processors, we consider a set of approaches for traffic estimation in modern CPUs discussing their benefits and drawbacks. The authors identify traffic measurements by using existing software tools as the most promising approach for traffic estimation, and they use Intel Performance Counter Monitor for this purpose. Three types of CPU loads are considered including two artificial tests and background system load. For each load type the amount of data transmitted through the L2-L3 interface is reported for various input parameters including the number of active cores and their dependences on the number of cores and operational frequency.

About the Authors

Maria S. Komar
P.G. Demidov Yaroslavl State University; Tampere University of Technology
Finland

150000, Sovetskaya str., 14, Yaroslavl, Russia;

PO Box 527, FI-33101, Korkeakoulunkatu 10, Tampere, Finland



V. Petrov
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation
аспирант, 191186, nab. reki Moiki, 61, St.Petersburg, Russia


K. Borunova
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation
магистрант, 191186, nab. reki Moiki, 61, St.Petersburg, Russia


D. Moltchanov
Tampere University of Technology
Finland
доцент, PO Box 527, FI-33101, Korkeakoulunkatu 10, Tampere, Finland


E. Koucheryavy
Tampere University of Technology
Russian Federation
профессор, PO Box 527, FI-33101, Korkeakoulunkatu 10, Tampere, Finland


References

1. Комар М. С., Кучерявый Е. А., Молчанов Д. А., Петров В. И., “Расчет характеристик протоколов беспроводной связи для взаимодействия между ядрами центрального процессора”, Электронный научный журнал ”Информационные технологии и телекоммуникации”, 3 (2014), 41–58; [Komar M. S., Kucheryavyy E. A., Molchanov D. A., Petrov V. I., “Raschet kharakteristik protokolov besprovodnoy svyazi dlya vzaimodeystviya mezhdu yadrami tsentral’nogo protsessora”, Elektronnyy nauchnyy zhurnal ”Informatsionnye tekhnologii i telekommunikatsii”, 3 (2014), 41–58, (in Russian).]

2. Molka D. et al., “Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System”, 18th Int. Conf. Parallel Archit. Compil. Tech. Ieee, 2009, 261–270.

3. Li X., http://www.eng.auburn.edu/ agrawvd/THESIS/LI/report.pdf, Survey of Wireless Network-on-Chip Systems.

4. Jornet J., Akyldiz I., “Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band”, IEEE Transactions on wireless communication, 10:10 (october 2011).

5. DiTomaso D., Laha S., Kodi A., Kaya S., Matolak D., “Evaluation and Performance Analysis of Energy Efficient Wireless NoC Architecture”, IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), 2012.

6. Intel Corporation, First 8-Core Desktop Processor, 2014.

7. http://products.amd.com, Advanced Micro Devices Inc., AMD desktop processor solutions.

8. Abadal S., Martinez R., Alarcon E., “A. Cabellos-Aparicio Scalability-Oriented Multicast Traffic Characterization”, Eighth IEEE/ACM International Symposium on Networks-onChip (NoCS), 2014.

9. http://intel.com, Intel Corporation.

10. http://www.intel.com/software/pcm, Intel Performance Counter Monitor.

11. Intel Corporation 2011 Intel Unlocked Processors Product Brief, 2011.

12. Geim A., Novoselov K., “’The rise of graphene”, Nature Materials Journal, 6 (2007), 183–191.

13. Jornet J., Akyildiz I., “Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks”, IEEE Journal on selected areas in communications, 31, 2:12 (2013).

14. Cid-Fuentes R. G., Jornet J. M., Akyildiz I. F., Alarcon E., “A receiver architecture for pulse-based electromagnetic nanonetworks in the terahertz band”, Proc. of IEEE International Conference on Communications (ICC), 2012, 4937–4942.

15. http://ark.intel.com/products/codename/63378/Sandy-Bridge-E, Intel Corporation Products (former Sandy Bridge E).

16. Binkert N., Sardashti S., Sen R., Sewell K., Shoaib M., Vaish N., Hill M. D., Wood D. A., Beckmann B., Black G., Reinhardt S. K., Saidi A., Basu A., Hestness J., Hower D. R., Krishna T., “The gem5 simulator”, ACM SIGARCH Computer Architecture News, 39:2 (2011).

17. http://marss86.org/ marss86/index.php/Home, MARSSx86 - Micro-ARchitectural and System Simulator for x86-based Systems, 2014.

18. Schone R., Molka D., Werner M., “’Wake-up latencies for processor idle states on current x86 processors”, Computer Science - Research and Development, Springer, Berlin Heidelberg, 2014, 1–9.

19. https://perf.wiki.kernel.org/index.php/Main Page, Perf:Linux profiling with performance counters.

20. http://www.kubuntu.org/news/kubuntu-14.10, Kubuntu 14.10.


Review

For citations:


Komar M., Petrov V., Borunova K., Moltchanov D., Koucheryavy E. Data Rate Estimation for Wireless Core-to-Cache Communication in Multicore CPUs. Modeling and Analysis of Information Systems. 2015;22(2):238-247. (In Russ.) https://doi.org/10.18255/1818-1015-2015-2-238-247

Views: 1176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)