Preview

Modeling and Analysis of Information Systems

Advanced search

The Estimating of the Number of Lattice Tilings of a Plane by a Given Area Centrosymmetrical Polyomino

https://doi.org/10.18255/1818-1015-2015-2-295-303

Abstract

We study a problem about the number of lattice plane tilings by the given area centrosymmetrical polyominoes. A polyomino is a connected plane geomatric figure formed by joiining a finite number of unit squares edge to edge. At present, various combinatorial enumeration problems connected to the polyomino are actively studied. There are some interesting problems on enuneration of various classes of polyominoes and enumeration of tilings of finite regions or a plane by polyominoes. In particular, the tiling is a lattice tiling if each tile can be mapped to any other tile by a translation which maps the whole tiling to itself. Earlier we proved that, for the number T(n) of a lattice plane tilings by polyominoes of an area n, holds the inequalities 2n−3 + 2[ n−3 2 ] ≤ T(n) ≤ C(n + 1)3 (2, 7)n+1 . In the present work we prove a similar estimate for the number of lattice tilings with an additional central symmetry. Let Tc(n) be a number of lattice plane tilings by a given area centrosymmetrical polyominoes such that its translation lattice is a sublattice of Z 2 . It is proved that C1( √ 2)n ≤ Tc(n) ≤ C2n 2 ( √ 2.68)n . In the proof of a lower bound we give an explicit construction of required lattice plane tilings. The proof of an upper bound is based on a criterion of the existence of lattice plane tiling by polyominoes, and on the theory of self-avoiding walks on a square lattice.

Keywords


About the Authors

A. V. Shutov
Vladimir State University
Russian Federation
канд. физ.-мат. наук, доцент, Stroitelei str., 11, Vladimir, 600024, Russia


E. V. Kolomeykina
Moscow State Technical University
Russian Federation
канд. физ.-мат. наук, доцент, 2-nd Bauman str., 5, Moscow, 105005, Russia


References

1. Golomb S.W., “Checkerboards and polyominoes”, Amer. Math. Monthly, 61 (1954), 672–682.

2. Guttman A. J., Polygons, polyominoes and polycubes, Springer, 2009.

3. Гарднер М., Путешествие во времени, Мир, М., 1990, 341 с.; Gardner M., Time Travel and Other Mathematical Bewilderments, 1988.

4. Golomb S.W., “Tiling with sets of polyominoes”, Journal of Combinatorial Theory, 9 (1970), 60–71.

5. Ammann R., Grunbaum B., Shephard G., “Aperiodic tiles”, Discrete and Computational Geometry, 1991, № 6, 1–25.

6. Brlek S., Provencal X., Fedou J.-M., “On the tiling by translation problem”, Discrete Applied Mathematics, 157 (2009), 464–475.

7. Wijshoff H. A. G., van Leeuwen J., “Arbitrary versus Periodic Storage Schemes and Tesselations of the Plane Using One Type of Polyomino”, Information and control, 62 (1984), 1–25.

8. Rhoads G. C., “Planar tilings by polyominoes, polyhexes, and polyiamonds”, Journal of Computational and Applied Mathematics, 174 (2005), 329–353.

9. Myers J., “Polyomino, polyhex and polyiamond tiling”, http://www.srcf.ucam.org/jsm28/tiling/.

10. Голомб С., Полимино, Мир, 1975; Golomb S.W., Polyominoes, 1975.

11. Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry”, Graphs and Combinatorics, 23:1 (June 2007), 259–267.

12. Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry”, Lecture Notes in Computer Science, 4535, 2008, 68–78.

13. Fukuda H., Kanomata Ch., Mutoh N., Nakamura G., Schattschneider D., “Polyominoes and Polyiamonds as Fundamental Domains of Isohedral Tilings with Rotational Symmetry”, Symmetry, 3:4 (2011), 828.

14. Horiyama T., Samejima M., “Enumeration of Polyominoes for p4 Tiling”, IEICE Tech.Rep. COMP2009-17, 109:54 (2009), 51–55.

15. Малеев А. В., “Алгоритм и компьютерная программа перебора вариантов упаковок полимино в плоскости”, Кристаллография, 58:5 (2013), 749–756; English transl.: Maleev A. V., “Algorithm and Computer-program Search for Variants of Polyomino Packings in Plane”, Crystallography reports, 58:5 (2013), 760–767.

16. Малеев А. В., Шутов А. В., “О числе трансляционных разбиений плоскости на полимино”, Математические исследования в естественных науках: Труды IX Всероссийской научной школы, Апатиты: K & M, 2013, 101–106; [Maleev A. V., Shutov A. V., “O chisle translyatsionnykh razbieniy ploskosti na polimino”, Matematicheskie issledovaniya v estestvennykh naukakh: Trudy IX Vserossiyskoy nauchnoy shkoly, Apatity: K & M, 2013, 101–106, (in Russian).]

17. Brlek S., Frosini A., Rinaldi S., Vuillon L., “Tilings by translation: enumeration by a rational language approach”, R15, The electronic journal of combinatorics, 13 (2006).

18. Beauquier D., Nivat M., “On Translating One Polyomino To Tile the Plane”, Discrete Comput. Geom., 6 (1991), 575—592.

19. Шутов А. В., Коломейкина Е. В., “Оценка числа решетчатых разбиений плоскости на полимино заданной площади”, Моделирование и анализ информационных систем, 20:5 (2013), 148–157; [Shutov A. V., Kolomeykina E. V., “The Estimation of the Number of Lattice Tilings of a Plane by a Given Area Polyomino”, Modeling and analysis of information systems, 20:5 (2013), 148–157, (in Russian).]

20. Gambini I., Vuillon L., “An algorothm for deciding if a polyomino tiles the plane by translations”, RAIRO – Theoretical Informatics and Applications 41.2, 2007, 147–155.

21. Bauerschmidt R., Duminil-Copin H., Goodman J., Slade G., “Lectures on selfavoiding walks”, Probability and Statistical Physics in Two and More Dimensions. Clay Mathematics Proceedings, 15 (2010), 395–476.


Review

For citations:


Shutov A.V., Kolomeykina E.V. The Estimating of the Number of Lattice Tilings of a Plane by a Given Area Centrosymmetrical Polyomino. Modeling and Analysis of Information Systems. 2015;22(2):295-303. (In Russ.) https://doi.org/10.18255/1818-1015-2015-2-295-303

Views: 1042


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)