On Finite Groups with an Irreducible Character Large Degree
https://doi.org/10.18255/1818-1015-2015-4-483-499
Abstract
Let G be a finite nontrivial group with an irreducible complex character χ of degree d = χ(1). It is known from the orthogonality relation that the sum of the squares of degrees of irreducible characters of G is equal to the order of G. N. Snyder proved that if |G| = d(d + e), then the order of G is bounded in terms of e, provided e > 1. Y. Berkovich proved that in the case e = 1 the group G is Frobenius with the complement of order d. We study a finite nontrivial group G with an irreducible complex character Θ such that |G| ≤ 2Θ(1)2 and Θ(1) = pq, where p and q are different primes. In this case we prove that G is solvable groups with abelian normal subgroup K of index pq. We use the classification of finite simple groups and prove that the simple nonabelian group whose order is divisible by a prime p and of order less than 2p4 is isomorphic to L2(q), L3(q), U3(q), Sz(8), A7, M11 or J1.
About the Authors
L. S. KazarinRussian Federation
doctor of science, professor
Sovetskaya str., 14, Yaroslavl, 150000, Russia
S. S. Poiseeva
Russian Federation
graduate student
Sovetskaya str., 14, Yaroslavl, 150000, Russia
References
1. Isaacs I. M., Character theory of finite groups, Academic press, New York, San Francisco, London, 1976, 305 pp.
2. Казарин Л. С., Сагиров И. А., “О степенях неприводимых характеров конечных простых групп”, Тр. ИММ УрО РАН, 7, 2001, 113–123; English transl.:Kazarin L. S., Sagirov I. A., “On the degrees of irreducible characters of finite simple groups”, Proc. of the Steklov Inst. Math. Suppl.(Supplementary issues), 2001, suppl. 2, № 2, S71–S81.
3. Snyder N., “Groups with a character of large degree”, Proc. Amer. Math. Soc., 136, 2008, 1893–1903.
4. Berkovich Y., “Groups with few characters of small degree”, J. Math., 110 (1999), 325–332.
5. Isaacs I. M., “Bounding the order of a group with a large degree character”, J. Algebra, 348:1 (2011), 264–275.
6. Durfee C., Jensen S., “A bound on the order of a group having a large character degree”, J. Algebra, 338 (2011), 197–206.
7. Lewis M. L., “Bounding group order by large character degrees: A question of Snyder”, Journal of Group Theory, 17:6 (2014), 1081–1116.
8. Feit W., The representation theory of finite groups, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1982, 510 pp.
9. Белоногов В.А., Представления и характеры в теории конечных групп, УрО АН СССР, Свердловск, 1990; [Belonogov V. A., Predstavlenija i haraktery v teorii konechnyh grupp, UrO AN SSSR, Sverdlovsk, 1990 (in Russian)].
10. Bierbrauer J., “The uniformly 3-homogeneus subsets in PGL(2, q)”, J.Algebraic Combinatorics, 4 (1995), 99–102.
11. Walter J., “The characterization of finite groups with abelian Sylow 2-subgroups”, Ann. Math., 8 (1969), 405–514.
12. Chabot P., “Groups whose Sylow 2-subgroups have cyclic commutator groups, II, III”, J.Algebra, 19, 21, 29 (1971, 1972, 1974), 21–30, 312–320, 455–458.
13. Gorenstein D., Finite Simple Groups. An introduction to their classification, Plenum
14. Publishing Corporation, New York, 1982, 333 pp.
15. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985, 255 pp.
16. Казарин Л. С., Поисеева С. С., “Конечные группы с большим неприводимым характером”, Матем. заметки, 98:2 (2015), 237–246; English transl.:Kazarin L. S., Poiseeva S. S., “Finite groups with large irreducible character”, Mathematical Notes, 98:2 (2015), 265–272.
17. Gorenstein D., Finite Group, Chelsea publishing company, New York, 1968, 522 pp.
18. Шмидт О. Ю., “Группы, все подгруппы которых специальные”, Матем. сб., 31:3–4 (1924), 3666372; English transl.: Schmidt O. Y., “Groups all whose subgroups are nilpotent”, Mat. Sb., 31 (1924), 366—372.
19. Amberg B., Kazarin L. S., “ABA-groups with cyclic subgroup B”, Труды института математики и механики УрО РАН, 18, 2012, 10–22.
Review
For citations:
Kazarin L.S., Poiseeva S.S. On Finite Groups with an Irreducible Character Large Degree. Modeling and Analysis of Information Systems. 2015;22(4):483-499. (In Russ.) https://doi.org/10.18255/1818-1015-2015-4-483-499