On Residual Separability of Subgroups in Split Extensions
https://doi.org/10.18255/1818-1015-2015-4-500-506
Abstract
In 1973, Allenby and Gregoras proved the following statement. Let G be a split extension of a finitely generated group A by the group B. 1) If in groups A and B all subgroups (all cyclic subgroups) are finitely separable, then in group G all subgroups (all cyclic subgroups) are finitely separable; 2) if in group A all subgroups are finitely separable, and in group B all finitely generated subgroups are finitely separable, then in group G all finitely generated subgroups are finitely separable. Recall that a group G is said to be a split extension of a group A by a group B, if the group A is a normal subgroup of G, B is a subgroup of G, G = AB and A ∩ B = 1. Recall also that the subgroup H of a group G is called finitely separable if for every element g of G, which does not belong to the subgroup H, there exists a homomorphism of G on a finite group in which the image of an element g does not belong to the image of the subgroup H. In this paper we obtained a generalization of the Allenby and Gregoras theorem by replacing the condition of the finitely generated group A by a more general one: for any natural number n the number of all subgroups of the group A of index n is finite. In fact, under this condition we managed to obtain a necessary and sufficient condition for finite separability of all subgroups (of all cyclic subgroups, of all finitely generated subgroups) in the group G.
About the Author
A. A. KrjazhevaRussian Federation
graduate student
Universitetskaya str., 7, Voronezh, 394016, Russia
References
1. Мальцев А.И., “О гомоморфизмах на конечные группы”, Учен. зап. Иван. гос. пед. ин-та., 18(5) (1958), 49–60; (Mal’cev A. I., “O gomomorfizmah na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18(5) (1958), 49–60, [in Russian].)
2. Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon Press, Oxford, 2004.
3. Burns R. C., “On finitely generated subgroups of free products”, J. Austral. Math. Soc., 12 (1971), 358–364.
4. Hall M., “Coset representations in free groups”, Trans. Amer. Math. Soc., 67 (1949), 421–432.
5. Rips E., “An example of a non-LERF group which is a free ptoduct of LERF groups with an amalgamated cyclic subgroup”, Israel J. of math., 70:1 (1990), 104–110.
6. Allenby R., Doniz D., “A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable”, Proc. Amer. Math. Soc., 124:4 (1996), 1003–1005.
7. Allenby R., Gregorac R., “On locally extended residually finite groups”, Lecture Notes Math., 319 (1973), 9–17.
8. Allenby R., Tang C., “Subgroup separability of generalized free products of freeby-finite groups”, Canad. Math. Bull., 36:4 (1993), 385–389.
9. Bruuner R. M., Burns R. G., Solitar D., “The subgroup separability of free products of two free groups with cyclic amalgamation”, Contributions to group theory. Contemp. Math., 33 (1984), 90–115.
10. Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106:2 (1963), 193–209.
11. Романовский Н.С., “О финитной аппроксимируемости свободных произведений относительно вхождения”, Известия АН СССР. Сер. Мат., 33:6 (1969), 1324–1329; Romanovskij N. S., “O finitnoj approksimiruemosti svobodnyh proizvedenij otnositel’no vhozhdenija”, Izvestija AN SSSR. Ser. Mat., 33:6 (1969), 1324–1329, [in Russian].)
12. Молдаванский Д.И., Ускова А.А., “О финитной отделимости подгрупп обобщенных свободных произведений групп”, Чебышевский сб., 14, 2013, 81–87; (Moldavanskij D. I., Uskova A. A., “O finitnoj otdelimosti podgrupp obobshhennyh svobodnyh proizvedenij grupp”, Chebyshevskij sb., 14, 2013, 81–87, [in Russian].)
13. Stebe D., “Residual finiteness of a class of knot groups”, Comm. Pure and Applied Math., 21 (1968), 563–583.
14. Логинова Е.Д., “Финитная отделимость циклических подгрупп свободного произведения двух групп с коммутирующими подгруппами”, Науч. тр. Иван. гос. ун-та, Математика, 3, 2000, 49–55; (Loginova E. D., “Finitnaja otdelimost’ ciklicheskih podgrupp svobodnogo proizvedenija dvuh grupp s kommutirujushhimi podgruppami”, Nauch. tr. Ivan. gos. un-ta, Matematika, 3, 2000, 49–55, [in Russian].)
15. Соколов Е.В., “Финитная отделимость циклических подгрупп в некоторых обобщенных свободных произведениях групп”, Вестник молодых ученых ИвГУ, 2 (2002), 7–10; (Sokolov E. V., “Finitnaja otdelimost’ ciklicheskih podgrupp v nekotoryh obobshhennyh svobodnyh proizvedenijah grupp”, Vestnik molodyh uchenyh IvGU, 2 (2002), 7–10, [in Russian].)
16. Азаров Д. Н., “О группах конечного общего ранга”, Вестн. Иван. гос. ун-та, 3 (2004), 100–103; (Azarov D. N., “O gruppah konechnogo obshego ranga”, Vestn. Ivan. gos. un-ta, 3 (2004), 100–103, [in Russian].)
17. Азаров Д.Н., “О финитной аппроксимируемости HNN-расширений и обобщенных свободных произведений групп конечного ранга”, Сиб. мат. журн., 54:6 (2013), 1203–1215; (Azarov D. N., “O finitnoj approksimiruemosti HNN-rasshirenij i obobshhennyh svobodnyh proizvedenij grupp konechnogo ranga”, Sib. mat. zhurn., 54:6 (2013), 1203– 1215, [in Russian].)
18. Азаров Д.Н., “О почти аппроксимируемости конечными p-группами”, Чебышевский сб., 11, 2010, 11–21; (Azarov D. N., “O pochti approksimiruemisti konechnymi p-gruppami”, Chebyshevskij sb., 11, 2010, 11–21, [in Russian].)
19. Азаров Д.Н., Чуракова Е.И., “Об аппроксимируемости конечными p-группами некоторых расщепляемых расширений”, Вестн. Иван. гос. ун-та, 2 (2009), 68–71; (Azarov D. N., Churakova E. I., “Ob approksimiruemosti konechnymi p-gruppami nekotoryh rasshhepljaemyh rasshirenij”, Vestn. Ivan. gos. un-ta, 2 (2009), 68–71, [in Russian].)
20. Курош А. Г., Теория групп, Наука, М., 1967; (Kurosh A. G., Teorija grupp, Nauka, M., 1967, [in Russian].
Review
For citations:
Krjazheva A.A. On Residual Separability of Subgroups in Split Extensions. Modeling and Analysis of Information Systems. 2015;22(4):500-506. (In Russ.) https://doi.org/10.18255/1818-1015-2015-4-500-506