Cryptosystem Based on Induced Group Codes
https://doi.org/10.18255/1818-1015-2016-2-137-152
Abstract
The code C on a group G, induced by the code N on a subgroup H, has the property that for decoding the code C one can use the decoder for the code N. Therefore, if N has an efficient algorithm for decoding, we can build a class of induced codes with known decoding algorithms. This feature is used in this paper to build the code McEliece-type public key cryptosystems on induced group codes. For this cryptosystem we described operations of encryption and decryption, an analysis of the resistance to the attack on the private key is proposed, and also weak keys are highlighted, which is used while breaking McEliece-type cryptosystem on the induced code C is reduced to breaking this cryptosystem on the code N. It is shown that a practically resistant cryptosystem on the induced code C can be built on the code N with small length. Based on the proposed cryptosystem a common protocol for open channel key generation is developed.
About the Authors
V. M. DeundyakRussian Federation
PhD
Y. V. Kosolapov
Russian Federation
PhD
References
1. McEliece R.J., “A Public-Key Cryptosystem Based on Algebraic Coding Theory”, JPL Deep Space Network Progress Report, 1978, No 42, 114–116.
2. Niederreiter H., “Knapsack-Type Cryptosystem and Algebraic Coding Theory”, Probl. Control and Inform. Theory, 15 (1986), 94–34.
3. Gabidulin E.M. et al., “Ideals Over a Non-Commutative Ring and Their Application in Cryptology.”, Advances in Cryptology–EUROCRYPT’91 / Ed. by D.W. Davies. Lect. Notes in Comp. Sci. Springer-Verlag, 547 (1991), 482–489.
4. Сидельников В.М., “Открытое шифрование на основе двоичных кодов Рида–Маллера”, Дискретная математика, 6:2 (1994), 3–20; [Sidel’nikov V.M., “Open coding based on Reed–Muller binary codes”, Diskr. Mat., 6:2 (1994), 3–20, (in Russian)].
5. Сидельников В.М., Шестаков С.О., “О системе шифрования, основанной на обобщенных кодах Рида–Соломона”, Дискретная математика, 3:3 (1992), 57–63; [Sidel’nikov V.M., Shestakov S.O., “O sisteme shifrovanija, osnovannoj na obobshhennyh kodah Rida– Solomona”, Diskr. Mat., 3:3 (1992), 57–63, (in Russian).]
6. Деундяк В.М. и др., “Модификация криптоаналитического алгоритма Сидельникова– Шестакова для обобщенных кодов Рида–Соломона и ее программная реализация”, Известия высших учебных заведений. Северо-Кавказский регион. Технические науки, 2006, No4, 15–20; [Deundyak V.M. et al., “Modifikatsiya kriptoanaliticheskogo algoritma Sidel’nikova–Shestakova dlya obobshchennykh kodov Rida–Solomona i ee programmnaya realizatsiya”, Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Tekhnicheskie nauki, 2006, No 4, 15–20, (in Russian).]
7. Wieschebrin C., “Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes”, Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25–28, 2010, 61–72.
8. Gibson J.K., “The Security of the Gabidulin Public Key Cryptosystem”, Advances in Cryptology EUROCRYPT’ 96. Ed. By U.M. Maurer, LNCS 1070, 1070 (1996), 212–223.
9. Overbeck R., “Structural Attacks for Public Key Cryptosystems based on Gabidulin Codes”, Journal of Cryptology, 21:2 (2008), 280–301.
10. Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, Lecture Notes in Computer Science, 4515 (2007), 347–360.
11. Чижов И.И., Бородин М.А., “Уязвимость криптосистемы Мак-Элиса, построенной на основе двоичных кодов Рида–Маллера”, Прикладаная дискрет. матем. Приложение, 2013, No6, 48–49; [Chizhov I.I., Borodin M.A., “Ujazvimost kriptosistemy MakJelisa, postroennoj na osnove dvoichnyh kodov Rida–Mallera”, Prikladnaya diskr. mat. Prilozhenie, 2013, No 6, 48–49, (in Russian).]
12. Чижов И.И., Бородин М.А., “Эффективная атака на криптосистему Мак-Элиса, построенную на основе кодов Рида–Маллера”, Дискрет. матем., 26:1 (2014), 10–20. [Chizhov I.I., Borodin M.A., “Jeffektivnaja ataka na kriptosistemu Mak-Jelisa, postroennuju na osnove kodov Rida–Mallera”, Diskr. Mat., 26:1 (2014), 10–20, (in Russian).]
13. Сидельников В.М., Теория кодирования, ФИЗМАТЛИТ, М., 2011; [Sidel’nikov V.M., Teoriya kodirovaniya, FIZMATLIT, M., 2011, (in Russian).]
14. Циммерман К.-Х., Методы теории модулярных представлений в алгебраической теории кодирования, МЦНМО, М., 2011; [Tsimmerman K.-Kh., Metody teorii modulyarnykh predstavleniy v algebraicheskoy teorii kodirovaniya, MTsNMO, M., 2011, (in Russian).]
15. Деундяк В.М., Косолапов Ю.В., “Алгоритмы для мажоритарного декодирования групповых кодов”, Моделирование и анализ информационных систем, 22:4 (2015), 464–482; [Deundyak V.M., Kosolapov Yu.V., “Algorithms for Majority Decoding of Group Codes”, Modeling and Analysis of Information Systems, 22:4 (2015), 464–482, (in Russian).]
16. Massey J.L., Threshold Decoding, MIT Press, Cambridge, 1963.
17. Curtis C.W., Reiner I., Representation Theory of Finite Groups and Associative Algebras, Intersclence Publishers, New York, 1962.
18. Lenstra A.K., Verheul E.R., “Selecting Cryptographic Key Sizes”, Journal of Cryptology, 14 (2001), 255–293.
19. Федоренко С.В., Методы быстрого декодирования линейных кодов, ГУАП, СПб, 2008; [Fedorenko S.V., Metody bystrogo dekodirovaniya lineynykh kodov, GUAP, SPb, 2008, (in Russian).]
20. Berson T., “Failure of the McEliece public-key cryptosystem under message resend and related-message attack”, Proceedings of CRYPTO, 1294 (1997), 213–220.
Review
For citations:
Deundyak V.M., Kosolapov Y.V. Cryptosystem Based on Induced Group Codes. Modeling and Analysis of Information Systems. 2016;23(2):137-152. (In Russ.) https://doi.org/10.18255/1818-1015-2016-2-137-152