Preview

Modeling and Analysis of Information Systems

Advanced search

On the Brauer Group of an Arithmetic Model of a Variety over a Global Field of Positive Characteristic

https://doi.org/10.18255/1818-1015-2016-2-164-172

Abstract

Let V be a smooth projective variety over a global field k = κ(C) of rational functions on a smooth projective curve C over a finite field Fq of characteristic p. Assume that there is a projective flat Fq-morphism π : X C, where X is a smooth projective variety and the generic scheme fiber of π is isomorphic to a variety V (we call π : X C an arithmetic model of a variety V ).

M. Artin conjectured the finiteness of the Brauer group Br(X) classifying sheaves of Azumaya algebras on X modulo similitude. It is well known that the group Br(X) is contained in the cohomological Brauer group

Br(X)=H2(X,G ). et m

By definition, the nonp component of the cohomological Brauer group Br(X) coincides with the direct sum of the l-primary components of the group Br(X) for all prime numbers l different from the characteristic p. It is known that the structure of k-variety on V yields the canonical morphism of the groups Br(k) Br(V ).

The finiteness of the nonp component of the cohomological Brauer group Br(X) of a variety X has been proved if

[Br(V )/ Im[Br(k) Br(V )]](non p)

is finite.
In particular, if
V is a K 3 surface (in other words, V is a smooth projective simply connected surface

over a field k and the canonical class of a surface of V is trivial: Ω2V = OV ) and the characteristic of the ground field p > 2, then, by the Skorobogatov – Zarhin theorem, [Br(V )/ Im[Br(k) Br(V )]](non p) is finite, so in this case the groups Br(X)(nonp) and Br(X)(nonp) are finite. 

About the Author

T. V. Prokhorova
A. G. and N. G. Stoletov Vladimir State University, Gorky str., 87, Vladimir, 600000, Russia
Russian Federation

PhD



References

1. Skorobogatov A.N., Zarhin Yu.G., “A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic”, arXiv: arXiv: 1403.0849v1 [math.AG] 4 Mar 2014, 1–10.

2. Танкеев С.Г., “О конечности группы Брауэра арифметической схемы”, Матем. заметки, 95:1 (2014), 136–149; [Tankeev S.G., “On the finiteness of the Brauer group of an arithmetic scheme”, Math. Notes, 95:1 (2014), 136–149 ], (in Russian)].

3. Colliot-Th ́el`ene J.-L., Skorobogatov A.N., Swinnerton-Dyer P., “Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points”, Invent. Math., 134:3 (1998), 579–650.

4. Милн Дж., Этальные когомологии, Мир, М., 1983; [Milne J.S., Etale cohomology, Princeton Univ. Press, Princeton, 1980].

5. Годеман Р., Алгебраическая топология и теория пучков, ИЛ, М., 1961; [Godement R., Topologie alg ́ebrique et th ́eorie des faisceaux, Hermann, Paris, 1958].

6. Lang S., Weil A., “Number of points of varieties in finite fields”, Amer. J. Math., 76:4 (1954), 819–827.

7. Танкеев С. Г., “О группе Брауэра арифметической схемы. II”, Изв. РАН. Сер. матем., 67:5 (2003), 155–176; [Tankeev S.G., “On the Brauer group of arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029].

8. Атья М., Макдональд И., Введение в коммутативную алгебру, Мир, М., 1972; [Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison–Wesley Publ. Co., Massachusets, 1969].

9. Skorobogatov A. N., “Descent on fibrations over the projective line”, Amer. J. Math., 118:5 (1996), 905–923.

10. Бурбаки Н., Алгебра. Многочлены и поля. Упорядоченные группы, Элементы математики, Наука, М., 1965; [Bourbaki N., E ́l ́ements de Math ́ematique. Alg ́ebre, livre II, Hermann, Paris, 1963].

11. Алгебраическая теория чисел, ред. Касселс Дж., Фр ̈елих А., Мир, М., 1969; [ Algebraic number theory, Proc. Internat. Conf. Brighton, 1965, eds. Cassels G. W. S., Fr ̈olich A., Academic Press, London, and Thompson, Washington, DC, 1967].


Review

For citations:


Prokhorova T.V. On the Brauer Group of an Arithmetic Model of a Variety over a Global Field of Positive Characteristic. Modeling and Analysis of Information Systems. 2016;23(2):164-172. (In Russ.) https://doi.org/10.18255/1818-1015-2016-2-164-172

Views: 1057


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)