On the Brauer Group of an Arithmetic Model of a Variety over a Global Field of Positive Characteristic
https://doi.org/10.18255/1818-1015-2016-2-164-172
Abstract
Let V be a smooth projective variety over a global field k = κ(C) of rational functions on a smooth projective curve C over a finite field Fq of characteristic p. Assume that there is a projective flat Fq-morphism π : X → C, where X is a smooth projective variety and the generic scheme fiber of π is isomorphic to a variety V (we call π : X → C an arithmetic model of a variety V ).
M. Artin conjectured the finiteness of the Brauer group Br(X) classifying sheaves of Azumaya algebras on X modulo similitude. It is well known that the group Br(X) is contained in the cohomological Brauer group
Br′(X)=H2(X,G ). et m
By definition, the non−p component of the cohomological Brauer group Br′(X) coincides with the direct sum of the l-primary components of the group Br′(X) for all prime numbers l different from the characteristic p. It is known that the structure of k-variety on V yields the canonical morphism of the groups Br(k) → Br′(V ).
The finiteness of the non−p component of the cohomological Brauer group Br′(X) of a variety X has been proved if
[Br′(V )/ Im[Br(k) → Br′(V )]](non −p)
is finite.
In particular, if V is a K 3 surface (in other words, V is a smooth projective simply connected surface
over a field k and the canonical class of a surface of V is trivial: Ω2V = OV ) and the characteristic of the ground field p > 2, then, by the Skorobogatov – Zarhin theorem, [Br′(V )/ Im[Br(k) → Br′(V )]](non −p) is finite, so in this case the groups Br′(X)(non−p) and Br(X)(non−p) are finite.
About the Author
T. V. ProkhorovaRussian Federation
PhD
References
1. Skorobogatov A.N., Zarhin Yu.G., “A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic”, arXiv: arXiv: 1403.0849v1 [math.AG] 4 Mar 2014, 1–10.
2. Танкеев С.Г., “О конечности группы Брауэра арифметической схемы”, Матем. заметки, 95:1 (2014), 136–149; [Tankeev S.G., “On the finiteness of the Brauer group of an arithmetic scheme”, Math. Notes, 95:1 (2014), 136–149 ], (in Russian)].
3. Colliot-Th ́el`ene J.-L., Skorobogatov A.N., Swinnerton-Dyer P., “Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points”, Invent. Math., 134:3 (1998), 579–650.
4. Милн Дж., Этальные когомологии, Мир, М., 1983; [Milne J.S., Etale cohomology, Princeton Univ. Press, Princeton, 1980].
5. Годеман Р., Алгебраическая топология и теория пучков, ИЛ, М., 1961; [Godement R., Topologie alg ́ebrique et th ́eorie des faisceaux, Hermann, Paris, 1958].
6. Lang S., Weil A., “Number of points of varieties in finite fields”, Amer. J. Math., 76:4 (1954), 819–827.
7. Танкеев С. Г., “О группе Брауэра арифметической схемы. II”, Изв. РАН. Сер. матем., 67:5 (2003), 155–176; [Tankeev S.G., “On the Brauer group of arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029].
8. Атья М., Макдональд И., Введение в коммутативную алгебру, Мир, М., 1972; [Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison–Wesley Publ. Co., Massachusets, 1969].
9. Skorobogatov A. N., “Descent on fibrations over the projective line”, Amer. J. Math., 118:5 (1996), 905–923.
10. Бурбаки Н., Алгебра. Многочлены и поля. Упорядоченные группы, Элементы математики, Наука, М., 1965; [Bourbaki N., E ́l ́ements de Math ́ematique. Alg ́ebre, livre II, Hermann, Paris, 1963].
11. Алгебраическая теория чисел, ред. Касселс Дж., Фр ̈елих А., Мир, М., 1969; [ Algebraic number theory, Proc. Internat. Conf. Brighton, 1965, eds. Cassels G. W. S., Fr ̈olich A., Academic Press, London, and Thompson, Washington, DC, 1967].
Review
For citations:
Prokhorova T.V. On the Brauer Group of an Arithmetic Model of a Variety over a Global Field of Positive Characteristic. Modeling and Analysis of Information Systems. 2016;23(2):164-172. (In Russ.) https://doi.org/10.18255/1818-1015-2016-2-164-172