Preview

Modeling and Analysis of Information Systems

Advanced search

Robust Error Estimation for Singularly Perturbed Fourth Order Problems

https://doi.org/10.18255/1818-1015-2016-3-364-369

Abstract

We consider two-dimensional singularly perturbed fourth order problems and estimate on properly constructed layer-adapted errors of a mixed method in the associated energy norms and balanced norms. This paper is a shortened version of [4].

About the Authors

S. Franz
Institut fuЁr Numerische Mathematik, Technische UniversitaЁt Dresden, 01062 Dresden, Deutschland
Russian Federation


R. H.-G.
Institut fuЁr Numerische Mathematik, Technische UniversitaЁt Dresden, 01062 Dresden, Deutschland
Russian Federation


References

1. Apel T., Anisotropic finite elements: local estimates and applications, Advances in Numer-ical Mathematics, B. G. Teubner, Stuttgart, 1999.

2. E. M. de Jager, Jiang Furu, The Theory of Singular Perturbation, North-Holland Series in Applied Mathematics and Mechanics, Elsevier, Amsterdam, 1996.

3. Falk R. S., Osborn J. E., “Error estimates for mixed methods”, RAIRO Anal. Numeґr., 14:3 (1980), 249–277.

4. Franz S., Roos H.-G., “Robust error estimation in energy and balanced norms for singularly perturbed fourth order problems”, Comput. Math. Appl., 2016, accepted for publication.

5. Girault V., Raviart P.-A., Finite element methods for Navier-Stokes equations: Theory and Algorithms, Springer series in computational mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1986.

6. Li J., “Full-Order Convergence of a Mixed Finite Element Method for Fourth-Order Ellip- tic Equations”, Journal of Mathematical Analysis and Applications, 230:2 (1999), 329–349.

7. Q. Lin, “A rectangle test for finite element analysis”, Proc. Syst. Sci. Eng., Great Wall (H.K.) Culture Publish Co., 1991, 213–216.

8. Lin Q., Yan N., Zhou A., “A rectangle test for interpolated element analysis”, Proc. Syst. Sci. Eng., Great Wall (H.K.) Culture Publish Co., 1991, 217–229.

9. Lin R., Stynes M., “A balanced finite element method for singularly perturbed reaction- diffusion problems”, SIAM J. Numerical Analysis, 50:5 (2012), 2729–2743.

10. Matthies G., “Local projection stabilisation for higher order discretisations of convection-diffusion problems on Shishkin meshes”, Adv. Comput. Math., 30:4 (2009), 315–337.

11. Monk P., “A mixed finite element method for the biharmonic equation”, SIAM J. Numer. Anal., 24:4 (1987), 737–749.

12. R. E. O’Malley Jr., Introduction to singular perturbations, Applied Mathematics and Mechanics, 14, Academic Press, New York-London, 1974.

13. Roos H.-G., Schopf M., “Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems”, ZAMM, 95:6 (2015), 551– 565.

14. Roos H.-G., Stynes M., Tobiska L., Robust numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, 24, Second, Springer-Verlag, Berlin, 2008.

15. Shishkin G. I., Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equa-tions, Russian Academy of Sciences, Ural Section, Ekaterinburg, 1992, (in Russian).

16. Yan N., Superconvergence analysis and a posteriori error estimation in finite element methods, Series in Information and Computational Science, 40, Science Press, Beijing, 2008.

17. Zhang Zh., “Finite element superconvergence on Shishkin mesh for 2-d convection-diffusion problems”, Math. Comp., 72:243 (2003), 1147–1177.


Review

For citations:


Franz S., H.-G. R. Robust Error Estimation for Singularly Perturbed Fourth Order Problems. Modeling and Analysis of Information Systems. 2016;23(3):364-369. https://doi.org/10.18255/1818-1015-2016-3-364-369

Views: 1010


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)