Preview

Modeling and Analysis of Information Systems

Advanced search

FDTD Method for Piecewise Homogeneous Dielectric Media

https://doi.org/10.18255/1818-1015-2016-5-539-547

Abstract

In this paper, we consider a numerical solution of Maxwell’s curl equations for piecewise uniform dielectric medium by the example of a one-dimensional problem. For obtaining the second order accuracy, the electric field grid node is placed into the permittivity discontinuity point of the medium. If the dielectric permittivity is large, the problem becomes singularly perturbed and a contrast structure appears. We propose a piecewise quasi-uniform mesh which resolves all characteristic solution parts of the problem (regular part, boundary layer and transition zone placed between them) in detail. The features of the mesh are discussed. 

About the Author

Zh. O. Dombrovskaya
Lomonosov Moscow State University, Faculty of Physics GSP-1, Leninskie Gory, Moscow 119991, Russia
Russian Federation

PhD student



References

1. Taflove A., Hagness S. C., Computational Electrodynamics: the Finite-Difference TimeDomain Method, 3rd ed., Artech House, 2005.

2. Taflove A., Johnson S. G., Oskooi A., Advances in FDTD Computational Electromagnetics: Photonics and Nanotechnology, Artech House, 2013.

3. Yee K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas Propag., 14:3 (1966), 302–307.

4. Monk P., “Convergence analysis of Yee’s scheme on non-uniform grids”, SIAM Journal of Numerical Analysis, 31:2 (1994), 393–412.

5. Li J., Shields S., “Superconvergence analysis of Yee scheme for metamaterial Maxwell’s equations on non-uniform rectangular meshes”, Numer. Math., 2015, 1–41, http://dx.doi.org/10.1007/s00211-015-0788-4.

6. Chu Q.X., Ding H., “Second-order accuarate FDTD equations at magnetic media interfaces”, IEEE Trans. Magn., 27 (2006), 3141–3143.

7. Chu Q.X., Ding H., “Second-order accuarate FDTD equations at dielectric interfaces”, Microwave Opt. Techn. Lett., 49:12 (2007), 3007–3011.

8. Bakhvalov N. S., “K optimizatsii metodov resheniia kraevykh zadach pri nalichii pogranichnogo sloia”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859, (in Russian).

9. Shishkin G.I., “Raznostnye approksimatsii singuliarno vozmushchennoi kraevoi zadachi dlia kvazilineinykh ellipticheskikh uravnenii, vyrozhdaushchikhsia v uravnenie pervogo poriadka”, Zh. vychisl. matem. i matem. fiz., 32:4 (1992), 550–566, (in Russian).

10. Sun G., Stynes M., “Finite element methods on piecewise equidistant meshes for interior turning point problems”, Numer. Algorithms, 8:1 (1994), 111–129.

11. Liseikin V.D., Layer resolving grids and transformations for singular perturbation problems, VSP BV, 2001.

12. Miller J.J.H., O’Riordan E., Shishkin G.I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, 1996.

13. Belov A.A, Kalitkin N.N., “Numerical simulations of boundary layer problems”, Mathematical Models and Computer Simulations, 8:4 (2016), 341–347.

14. Belov A.A, Kalitkin N.N., “Grid methods for boundary layer problem”, Bulletin of the Russian Academy of Sciences: Physics, 79:12 (2015), 1448–1452.

15. Belov A. A., “Programmy SuFaReC dlia sverkhbystrogo rascheta ellipticheskikh uravnenii v priamougolnoi oblasti”, Preprinty IPM im. M.V. Keldysha, 2015, № 44, 1–12, http://library.keldysh.ru/preprint.asp?id=2015-44, (in Russian).

16. Kalitkin N. N., Belov A. A., “Analogue of the richardson method for logarithmically converging time marching”, Doklady Mathematics, 88:2 (2013), 596–600.

17. Belov A. A., Kalitkin N. N., “Evolutionary factorization and superfast relaxation count”, Mathematical Models and Computer Simulations, 7:2 (2015), 103–116.

18. Mur G., “Absorbing boundary conditions for the finite-difference approximation ot the time-domain electromagnetic-field equations”, IEEE Trans. Electromagn. Comp., EMC- 23:4 (1981), 377–382.

19. Bogolyubov A.N., Butkarev I.A., Dementieva Yu.S., “Research of propagation of electromagnetic pulses through photonic crystal structures”, Moscow University physics bulletin, 65:6 (2010), 425–431.

20. Bogolubov A. N., Belokopytov G. V., Dombrovskaya Z. O., “Modeling of spectral dependences for 2D photonic crystal waveguide systems”, Moscow University physics bulletin, 68:6 (2013), 344–350.

21. Dombrovskaya Zh. O, Bogolyubov A. N., “Analiz tochnosti i skhodimosti odnomernoi skhemy Yee metodom sguscheniia setok”, Uchnye zapiski fizicheskogo fakulteta MGU, 2016, № 3, 163112-1–163112-3, http://uzmu.phys.msu.ru/file/2016/3/163112.pdf, (in Russian).

22. Richardson L. F., Gaunt J. A., “The deferred approach to the limit”, Phil. Trans. A, 226 (1927), 229–349.


Review

For citations:


Dombrovskaya Zh.O. FDTD Method for Piecewise Homogeneous Dielectric Media. Modeling and Analysis of Information Systems. 2016;23(5):539-547. (In Russ.) https://doi.org/10.18255/1818-1015-2016-5-539-547

Views: 1157


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)