Preview

Modeling and Analysis of Information Systems

Advanced search

Dynamics of a System of Two Simplest Oscillators with Finite Non-linear Feedbacks

https://doi.org/10.18255/1818-1015-2016-6-841-849

Abstract

In this paper, we consider a singularly perturbed system of two differential equations with delay which simulates two coupled oscillators with nonlinear feedback. Feedback function is assumed to be finite, piecewise continuous, and with a constant sign. In this paper, we prove the existence of relaxation periodic solutions and make conclusion about their stability. With the help of the special method of a large parameter we construct asymptotics of the solutions with the initial conditions of a certain class. On this asymptotics we build a special mapping, which in the main describes the dynamics of the original model. It is shown that the dynamics changes significantly with the decreasing of coupling coefficient: we have a stable homogeneous periodic solution if the coupling coefficient is of unity order, and with decreasing the coupling coefficient the dynamics become more complex, and it is described by a special mapping. It was shown that for small values of the coupling under certain values of the parameters several different stable relaxation periodic regimes coexist in the original problem.

About the Author

A. A. Kashchenko
P.G. Demidov Yaroslavl State University
Russian Federation

PhD, 14 Sovetskaya str., Yaroslavl 150003, Russia



References

1. Dmitriev A. S., Kislov V. Ya., Stokhasticheskie kolebaniya v radiotekhnike, Nauka, Moskva, 1989, (in Russian).

2. Rozhdestvenskiy V. V., Struchkov I. N., “Perekhodnyy khaos v avtogeneratore stokhasticheskikh kolebaniy s zhestkim vozbuzhdeniem i chetnoy nelineynostyu”, Journal of technical physics, 62:10 (1992), 102–110, (in Russian).

3. Struchkov I. N., “Perekhodnyy khaos v aperiodicheskom ostsillyatore s zapazdyvaniem”, Radiotekhnika i elektronika, 38:3 (1993), 454–463, (in Russian).

4. Dmitriev A. S., Kaschenko S. A., “Dinamika generatora s zapazdyvayushchey obratnoy svyazyu i nizkodobrotnym filtrom vtorogo poryadka”, Radiotekhnika i elektronika, 34:12 (1989), 24–39, (in Russian).

5. Dmitriev A. S., Kaschenko S. A., “Asymptotics of irregular oscillations in a self-sustained oscillator model with delayed feedback”, Doklady Mathematics, 328 (1993), 157–160.

6. Kaschenko S. A., “Asimptotika relaksatsionnykh kolebaniy v sistemakh differentsialno-raznostnykh uravneniy s finitnoy nelineynostyu. I”, Differentsialnye uravneniya, 31:8 (1995), 1330–1339, (in Russian).

7. Kaschenko S. A., “Asimptotika relaksatsionnykh kolebaniy v sistemakh differentsialno-raznostnykh uravneniy s finitnoy nelineynostyu. II”, Differentsialnye uravneniya, 31:12 (1995), 1968–1976, (in Russian).

8. Sharkovsky A. N., Maistrenko Yu. L., and Romanenko E. Yu., Difference equations and their applications, Springer Science & Business Media, 2012.

9. Kaschenko S. A., “Relaxation Oscillations in a System with Delays Modeling the Predator-Prey Problem”, Modeling and Analysis of Information Systems, 20:1 (2013), 52–98, (in Russian).


Review

For citations:


Kashchenko A.A. Dynamics of a System of Two Simplest Oscillators with Finite Non-linear Feedbacks. Modeling and Analysis of Information Systems. 2016;23(6):841-849. (In Russ.) https://doi.org/10.18255/1818-1015-2016-6-841-849

Views: 1093


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)