Preview

Modeling and Analysis of Information Systems

Advanced search

Optimization Problems with Averaging over the Variables

https://doi.org/10.18255/1818-1015-2017-2-227-238

Abstract

The problems of nonlinear programming, criteria and limitations depend on the variables averaged. It is shown that if these problems have solutions, the Lagrangian reaches the maximum for the variables, which are averaged. The functions defining the problem can not be differentiable and continuous on these variables, the set of possible values may contain isolated points. In variational problems there can be no solution in the class of piecewise continuous functions of the variables, but there can be a generalized solution in which these variables change in the sliding mode, and the optimality criterion tends to its upper edge. If in such problems the solution in the class of piecewise - continuous functions exists, the conditions of optimality of this solution are in the form of the Hamiltonian function of the maximum principle. The relationship between the average over time and across multiple variables is considered.

About the Author

Anatoly M. Tsirlin
Program Systems Institute of RAS
Russian Federation

Prof

4a Petra 1 str., Veskovo Jaroslavskoy 152020, Russia



References

1. Цирлин А.М., Оптимальные циклы и циклические режимы, Энергоатомиздат, М., 1983; [Tsirlin A. M., Optimalnie zikly i ziklisheskie regimi, Energoatomizdat, M., 1983, (in Russian).]

2. Янг Л., Лекции по вариационному исчислению и теории оптимального управления, Мир, М., 1977; [Jang L., Lekzii po variazionnomu ishisleniju i teoriin optimalnogo upravlenija, Mir, M., 1977, (in Russian).]

3. Fromovitz St., “Non-linear programmingn with randomisation”, Manag. Sci. A., 11:9 (1965).

4. Himmelblau D. M., Applied Nonlinear Programming, N-Y, 1972.

5. Цирлин А.М., Методы усредненной оптимизации и их приложения, Физматлит, М., 1997; [Tsirlin A. M., Metodi usrednennoy optimizazii i ix prilogenija, Fizmatkit, M., 1997, (in Russian).]

6. Цирлин А.М., “Задачи и методы усредненной оптимизации”, Труды Математического института им. Стеклова, 261 (2008), 1–17; [Tsirlin A. M., “Zadashi i metodi usrednennoy optimizazii”, Trudi instituta im. Steklova, 261 (2008), 1–17, (in Russian).]

7. Афанасьев А.П., Дикусар В.В., Милютин А.А., Чуканов С.А., Необходимое условие в оптимальном управлении, Наука, М., 1990; [Afanasyev A.P., Dicusar V. V., Milutin A. A., Shukanov C. A., Neobxodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990, (in Russian).]

8. Дубовицкий А.Я., Милютин А.А., “Теория принципа максимума”, Методы теории экстремальных задач в экономике, Наука, М., 1981, 6–47; [Dubovizky A. J., Milutin A. A., “Teorija prinzipa maksimuma”, Metodi teorii ecstremalnix zadash v ekonomike, Nauka, M., 1981, 6–47, (in Russian).]

9. Цирлин А.М., “Оптимизация в среднем и скользящие режимы в задачах оптимального управления”, Изв. АН СССР. Техн. кибернетика, 1974, №2, 143–151; [Tsirlin A. M., “Optimizacija v srednem i skolzjashie regimi v zadashax optimalnogo upravlenija”, Izv. AN SSSR. Texn. kibernetika, 1974, № 2, 143–151, (in Russian).]

10. Розоноэр Л.И., “Принцип максимума Понтрягина в теории оптимальных систем”, Автомат. и телемех., 20:10 (1959), 1320–1334; [English transl.: [Rozonoer L. I., “The Maximum Principle in the theory of optimal systems”, Autom. Remote Control, 20:10 (1959), 1320–1334 ].

11. Цирлин А.М., “Условия оптимальности скользящих режимов и прнцип максимума для задачи со скалярным аргументом”, Автоматика и телемеханика, 2009, №5, 106– 121; [English transl.: Tsirlin A. M., “Optimality conditions of sliding modes and the maximum principle for control problems with the scalar argument”, Autom. Remote Control, 70:5 (2009), 839–854 ].


Review

For citations:


Tsirlin A.M. Optimization Problems with Averaging over the Variables. Modeling and Analysis of Information Systems. 2017;24(2):227-238. (In Russ.) https://doi.org/10.18255/1818-1015-2017-2-227-238

Views: 928


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)