Preview

Modeling and Analysis of Information Systems

Advanced search

Moving Front Solution of the Reaction-Diffusion Problem

https://doi.org/10.18255/1818-1015-2017-3-259-279

Abstract

In  this  paper,  we study  the  moving  front solution  of the  reaction-diffusion  initialboundary value problem  with a small diffusion coefficient. Problems  in such statements can be used to model physical processes associated  with the propagation of autowave  fronts, in particular, in biophysics or in combustion. The moving front solution is a function  the distinctive feature of which is the presence in the domain  of its definition  of a subdomain where the function  has a large gradient. This subdomain is called an internal  transition layer.  In the nonstationary case, the position of the transition layer varies with  time  which, as it is well known,  complicates  the  numerical  solution  of the  problem  as well as the justification of the correctness  of numerical calculations. In this case the analytical method is an essential component  of the  study.   In the  paper,  asymptotic methods  are applied  for analytical investigation of the  solution  of the  problem  posed.   In particular, an  asymptotic approximation of the  solution  as an expansion  in powers of a small parameter is constructed by the  use of the  Vasil’eva algorithm and  the existence  theorem  is carried  out using the asymptotic method  of differential  inequalities.  The methods used also make it possible to obtain  an equation  describing  the motion  of the front.  For this purpose  a transition to local coordinates  takes  place in the  region of the  front localization.   In the  present paper, in comparison  with earlier publications dealing with two-dimensional problems  with internal  transition layers the  transition to local coordinates  in the  vicinity  of the  front has been modified, that led to the simplification  of the algorithm of determining the equation  of the curve motion.

About the Authors

Evgeny A. Antipov
Lomonosov Moscow State University
Russian Federation

Deputy Head  of the  Informatization Department.

1, bld.  2 Leninskiye Gory, Moscow  119991



Vladimir T. Volkov
Lomonosov Moscow State University
Russian Federation

PhD, Faculty of Physics.

1, bld.  2 Leninskiye Gory, Moscow  119991



Natalia T. Levashova
Lomonosov Moscow State University
Russian Federation

PhD,Faculty of Physics.

1, bld.  2 Leninskiye Gory, Moscow  119991



Nikolay N. Nefedov
Lomonosov Moscow State University
Russian Federation

professor, Dr.  Sci., Faculty of Physics.

1, bld.  2 Leninskiye Gory, Moscow  119991


References

1. Vasil’eva A.B., Butuzov V.F, Asimptoticheskie metody v teorii singuljarnyh vozmushhenij, Vysshaja shkola, Moskva, 1990. 208 p. (in Russian).]

2. Nefedov N. N., “An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics, and stability”, Differential Equations, 36:2 (2000), 298-305.

3. Volkov V. T., Nefedov N. N., “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Comput. Math. Math. Phys., 46:4 (2006), 585-593.

4. Bozhevol’nov Yu. V., Nefedov N. N., “Front motion in a parabolic reactiondiffusion problem”, Comput. Math. Math. Phys., 50:2 (2010), 264-273.

5. Antipov E. A., Levashova N. T., Nefedov N.N., “Asymptotics of the front motion in the reaction-diffusion-advection problem”, Comput. Math. Math. Phys., 54:10 (2014), 1536-1549.

6. Nefedov N., Yagremtsev A., “On extension of asymptotic comparison principle for time periodic reaction-diffusion-advection systems with boundary and internal layers”, Lecture Notes in Computer Science, 9045 (2015), 62-72.

7. Levashova N. T., Melnikova A. A., “Step-like contrast structure in a singularly perturbed system of parabolic equations”, Differential Equations, 51:3 (2015), 342-361.

8. Nefedov N.N., “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differential Equations, 31:7 (1995), 1077-1085.

9. Nefedov N. N., Davydova M. A., “Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems”, Differential Equations, 48:5 (2012), 745-755.

10. Butuzov V. F., Levashova N. T., Melnikova A.A., “A Steplike Contrast Structure in a Singularly Perturbed System of Elliptic Equations”, Comput. Math. Math. Phys., 53:9 (2013), 1239-1259.

11. Volkov V. T., Nefedov N. N., Antipov E. A., “Asymptotic-numerical method for moving fronts in two-dimensional r-d-a problems”, Lecture Notes in Computer Science, 9045 (2015), 408-416.

12. Volpert A. I., Volpert V. A., Volpert V. A., Traveling wave solutions of parabolic systems, American Mathematical Soc., 1994.

13. Sattinger D. H., “Monotone Methods in Elliptic and Parabolic Boundary Value Problems”, Indiana Univ. Math. J., 21:11 (1972), 979-1001.

14. Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.


Review

For citations:


Antipov E.A., Volkov V.T., Levashova N.T., Nefedov N.N. Moving Front Solution of the Reaction-Diffusion Problem. Modeling and Analysis of Information Systems. 2017;24(3):259-279. (In Russ.) https://doi.org/10.18255/1818-1015-2017-3-259-279

Views: 1460


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)