Preview

Modeling and Analysis of Information Systems

Advanced search

Nonstationary Equations for the Reaction Layer with the Degenerate Equilibrium Points

https://doi.org/10.18255/1818-1015-2017-3-309-321

Abstract

We consider a nonstationary process of spreading  some substance in a one-dimensional spatially  inhomogeneous  system  of cells.  It  is assumed  that a change  in the  concentration of \(u_n (t)\) in a cell with  the  number  \(n\) with  time \(t\) is determined by the  difference in concentration in this  cell and in its  two  neighbors  on the  left and  on the  right,  as well as the  source  density,  which  depends  on \(n\) and  depends  on \(u_n (t)\).  Such a model leads to the  initial-boundary value  problem  for the  differentialdifference  equation  (differentiation with  respect  to  t variable,  the  difference  expression  with  respect to \(n\)).   With  a sufficiently  small  difference in concentration in each  pair  of neighboring  cells we can replace the difference expression by the second partial derivative  with respect  to the spatial  coordinate, and  describe the  propagation by the  reaction-diffusion  equation.   This  equation  belongs to the  class of quasilinear  parabolic  equations.   It is assumed  that the  density  of the  sources vanishes  (with  changing the  sign) at  three  values of the  concentration, two of which, lower and  upper,  are stable.  There  is also an intermediate unstable  state  with zero source density,  in which the sign reversal also takes place.  The peculiarity of our model is that we assume,  that two extreme  roots  of the  source density  function  are degenerate (with an integer or fractional  exponent). We intend to show analytically and by the computer simulation, that this  model leads  to  the  fact,  that the  rate  of asymptotic aspiration of concentration to equilibrium  values for a moving front becomes power-law instead  of exponential, which takes  place for standard models.   In the  paper,  we have  constructed a formal  asymptotics solution  of the  initialboundary value problem for the reaction-diffusion  equation  in a homogeneous medium with a power-law dependence  of the  source  density  on the  temperature, an  upper  and  lower solutions  are  constructed, a rigorous  justification of the  formal  asymptotics is given.   Precise  solutions  of the  diffusion reaction equation  are constructed for a wide class of source density  functions.

About the Authors

Aleksei A. Bykov
Lomonosov Moscow State University
Russian Federation

professor.

1, bld.  2 Leninskiye Gory, Moscow  119991



Kristina E. Ermakova
Lomonosov Moscow State University
Russian Federation

graduate student.

1, bld.  2 Leninskiye Gory, Moscow  119991



References

1. Butuzov V. F., “On Periodic Solutions to Singularly Perturbed Parabolic Problems in the Case of Multiple Roots of the Degenerate Equation”, Comp. Math. Math. Phys., 51:1 (2011), 40-50.

2. Butuzov V. F. et al , “On a singularly perturbed initial value problem in the case of a double root of the degenerate equation”, Nonlinear Anal. Theory, Meth. and Appl., 83 (2013), 1-11.

3. Butuzov V. F., “On the Special Properties of the Boundary Layer in Singularly Perturbed Problems with Multiple Root of the Degenerate Equation”, Math. Notes, 94:1 (2013), 60-70.

4. Alshin A. B., et al., “The traveling wave as a solution of a nonlinear equation in semiconductors with strong spatial dispersion”, Comp. Math. Math Phys., 48:5 (2008), 764-768.

5. Butuzov V. F., Nefedov N. N., Schneider K. R., “Singularly perturbed problems in case of exchange of stabilities”, J. Math. Sci., 121:1 (2004), 1973-2079.

6. Vasil’eva A., Nikitin A., Petrov A. , “Stability of contrasting solutions of nonlinear hydromagnetic dynamo equations and magnetic fields reversals in galaxies”, Geophysical and Astrophysical Fluid Dynamics, 78:1-4 (1994), 261-279.

7. Bykov A. et al , “Anomalous Persistence of bisymmetric Magnetic Structures in Spiral Galaxies”, MNRAS, 292:1 (1997), 1-10.

8. Moss D., Petrov A., Sokoloff D. et al , “The motion of magnetic fronts in spiral galaxies”, Geophysical and Astrophysical Fluid Dynamics, 92:1-2 (2000), 129-149.

9. Bozhevol’nov Yu. V., Nefedov N. N., “Front motion in the parabolic reactiondiffusion problem”, Comp. Math. Math. Phys., 50:2 (2010), 264-273.

10. Pao C. V., Nonlinear parabolic and elliptic equations, Plenum, New York, 1992.


Review

For citations:


Bykov A.A., Ermakova K.E. Nonstationary Equations for the Reaction Layer with the Degenerate Equilibrium Points. Modeling and Analysis of Information Systems. 2017;24(3):309-321. (In Russ.) https://doi.org/10.18255/1818-1015-2017-3-309-321

Views: 1005


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)