The Expansion of Self-similar Functions in the Faber–Schauder System
https://doi.org/10.18255/1818-1015-2017-4-508-515
Abstract
Let \(\Omega = A^{N}\) be a space of right-sided innite sequences drawn from a nite alphabet \(A = \{0,1\}\), \(N = \{1,2,\dots\}\). Let
$$\label{rho}
\rho(\boldsymbol{x},\boldsymbol{y}) =\sum_{k=1}^{\infty}|x_{k} - y_{k}|2^{-k}
$$
- be a metric on \(\Omega = A^{N}\), and \(\mu\) - the Bernoulli measure on \(\Omega\) with probabilities \(p_0,p_1>0\), \(p_0+p_1=1\). Denote by \(B(\boldsymbol{x},\omega)\) an open ball of radius \(r\) centered at \(\boldsymbol{\omega}\). The main result of this paper is
$$
\mu\left(B(\boldsymbol{\omega},r)\right) =r+\sum_{n=0}^{\infty}\sum_{j=0}^{2^n-1}\mu_{n,j}(\boldsymbol{\omega})\tau(2^nr-j),
$$
where \(tau(x) =2\min\{x,1-x\}\), \(0\leq x \leq 1\), \(tau(x) = 0, if x<0 or x>1\),
$$mu_{n,j}(\boldsymbol{\omega}) = \left(1-p_{\omega_{n+1}}\right)
\prod_{k=1}^n p_{\omega_k\oplus j_k},\ \ j = j_12^{n-1}+j_22^{n-2}+\dots+j_n$$.
The family of functions \(1,x,\tau(2^nx-j)\), \(j =0,1,\dots,2^n-1\), \(n=0,1,\dots\) is the Faber{Schauder system for the space \(C([0, 1])\) of continuous functions on \([0, 1]\).
We also obtain the Faber{Schauder expansion for the Lebesgue's singular function, Cezaro curves, and Koch{Peano curves.
About the Author
Evgeniy A. TimofeevRussian Federation
ScD, professor
References
1. Kashin B.S., Saakyan A. A., Orthogonal series, 2nd ed., Izd. NauchnoIssled. Aktuarno-Finans. Tsentra (AFTs), Moscow, 1999.
2. Lomnicki Z., Ulam S. E., “Sur la theorie de la mesure dans les espaces combinatoires et son application au calcul des probabilites. I. Variables independantes”, Fundamenta Mathematicae, 23:1 (1934), 237–278.
3. De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 285–298.
4. Levy P., “Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 180–239.
Review
For citations:
Timofeev E.A. The Expansion of Self-similar Functions in the Faber–Schauder System. Modeling and Analysis of Information Systems. 2017;24(4):508-515. (In Russ.) https://doi.org/10.18255/1818-1015-2017-4-508-515