Preview

Modeling and Analysis of Information Systems

Advanced search

About Not Countable Ideals in a Semi-Lattice of the Enumeration Degrees

https://doi.org/10.18255/1818-1015-2012-5-74-80

Abstract

This paper is dedicated to the study of ideals in semi-lattice of the enumeration degrees.

About the Authors

B. I. Solon
Шуйский государственный педагогический университет
Russian Federation
доктор физ.-мат. наук


V. V. Tikhov
Шуйский государственный педагогический университет
Russian Federation
аспирант


References

1. Соар Роберт И. Вычислимо перечислимые множества и степени. Казань: Казанское математическое общество, 2000. Soare Robert I. Recursively Enumerable Sets and Degrees. Springer-Verlag, Berlin Heidelberg New York, 1987

2. Case J. Enumeration reducibility and partial degrees // Ann. Math. Logic. 1970. 2. P. 419–439.

3. Cooper S.B. Partial degrees and the density problem. Part 2: The enumeration degrees of the 2/j sets are dense // J. Symb. Logic. 1984. 49. P. 503–513

4. McEvoy K. Jumps of quasi-minimal enumeration degrees // J. Symb. Logic. 1985. 50. P. 839–848.

5. Поляков E.A., Розинас М.Г. Теория алгоритмов: Учебное пособие. Иваново: Изд-во ИвГУ, 1976.

6. Cooper S.B., Sorbi A., Yi X. Cupping and noncupping in the e-degrees of sets // Annals of Pure and Applied Logic. 1997. 82. P. 317–342.

7. Gutteridge L. Some results on e-reducibility. Ph.D.Diss., Simon Fraser University, Burnaby, 1971.

8. Роджерс X. Теория вычислимых функций и эффективная вычислимость. М.: Мир, 1972.


Review

For citations:


Solon B.I., Tikhov V.V. About Not Countable Ideals in a Semi-Lattice of the Enumeration Degrees. Modeling and Analysis of Information Systems. 2012;19(5):74-80. (In Russ.) https://doi.org/10.18255/1818-1015-2012-5-74-80

Views: 706


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)