Preview

Modeling and Analysis of Information Systems

Advanced search

Isoperimetric and Functional Inequalities

https://doi.org/10.18255/1818-1015-2018-3-331-342

Abstract

We establish lower estimates for an integral functional
$$\int\limits_\Omega f(u(x), \nabla u(x)) \, dx ,$$
where \(\Omega\) -- a bounded domain in \(\mathbb{R}^n \; (n \geqslant 2)\), an integrand \(f(t,p) \, (t \in [0, \infty),\; p \in \mathbb{R}^n)\) -- a function that is \(B\)-measurable with respect to a variable \(t\) and is convex and even in the variable \(p\), \(\nabla u(x)\) -- a gradient (in the sense of Sobolev) of the function \(u \colon \Omega \rightarrow \mathbb{R}\). In the first and the second sections we utilize properties of permutations of differentiable functions and an isoperimetric inequality \(H^{n-1}( \partial A) \geqslant \lambda(m_n A)\), that connects \((n-1)\)-dimensional Hausdorff measure \(H^{n-1}(\partial A )\) of relative boundary \(\partial A\) of the set \(A \subset \Omega\) with its \(n\)-dimensional Lebesgue measure \(m_n A\). The integrand \(f\) is assumed to be isotropic, i.e. \(f(t,p) = f(t,q)\) if \(|p| = |q|\).
Applications of the established results to multidimensional variational problems are outlined. For functions \( u \) that vanish on the boundary of the domain \(\Omega\), the assumption of the isotropy of the integrand \( f \) can be omitted. In this case, an important role is played by the Steiner and Schwartz symmetrization operations of the integrand \( f \) and of the function \( u \). The corresponding variants of the lower estimates are discussed in the third section. What is fundamentally new here is that the symmetrization operation is applied not only to the function \(u\), but also to the integrand \(f\). The geometric basis of the results of the third section is the Brunn-Minkowski inequality, as well as the symmetrization properties of the algebraic sum of sets.

About the Author

Vladimir S. Klimov
P.G. Demidov Yaroslavl State University
Russian Federation
Doctor of Science


References

1. Polya G., Szego G., Isoperimetric Inequalities in Mathematical Physics, Princeton, 1951.

2. Maz’ja Vladimir G., Sobolev spaces, Translated from the Russian by T.O. Shaposhnikova, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985.

3. Sobolev S. L., Introduction to the Theory of Cubature formulas, Nauka, Moscow, 1974, (in Russian).

4. Kolyada V.I., “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117.

5. Evans L.S. and Gariepy R.F., Measure theory and fine properties of functiond, CRC Press, Boca Raton, Florida, 1992.

6. Kawohl B., Rearrangements and convexity of level sets in P.D.E., Lectures Notes in Math., 1150, Springer-Verlag, Berlin, 1985.

7. Talenti G., “On Isoperimetric Theorems of Mathematical Physics”, Handbook of convex Geometry, B, Amsterdam, New York, North-Holland, 1993.

8. Kesavan S., Symmetrization & Applications, World Scientific, New Jersey, 2006, 160 с.

9. Rakotoson J.-M., Rearrangement Relatif: Un instrument destimations dans les problemes aux limites, Mathematiques et Applications (French Edition), 64, Springer, 2008.

10. Solynin A. Yu., “Continuous symmetrization via polarization”, Algebra i Analis, 24:1 (2012), 157–222.

11. Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

12. Hadwiger H., Vorlesungen ¨uber Inhalt, Oberfl¨ache und Isoperimetrie, 1150, Springer– Verlag, 1957.

13. Klimov V.S., “Imbedding theorems and geometric inequalities”, Mathematics of the USSR–Izvestiya, 10:3 (1976), 615–638.

14. Klimov V. S., “Ob ocenkah snisu nekotoryh integralnyh funcionalov”, Kachestvennye i priblizhennye metody issledovaniya operatornyh uravnenii, Yar. gos. un-t, Yaroslavl, 1981, 77–87, (in Russian).

15. Klimov V.S., “On imbedding theorems for anisotropic classes of functions”, Mathematics of the USSR–Sbornik, 55:1 (1986), 195–205.

16. Klimov V. S., “On the symmetrization of anisotropic integral functionals”, Russian Mathematics (Izvestiya VUZ. Matematika), 43:8 (1999), 23–29.

17. Klimov V. S., “Symmetrization of functions from Sobolev spaces”, Russian Mathematics (Izvestiya VUZ. Matematika), 46:11 (2002), 41–47.

18.


Review

For citations:


Klimov V.S. Isoperimetric and Functional Inequalities. Modeling and Analysis of Information Systems. 2018;25(3):331-342. (In Russ.) https://doi.org/10.18255/1818-1015-2018-3-331-342

Views: 821


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)