Preview

Modeling and Analysis of Information Systems

Advanced search

On the Variety of Paths on Complete Intersections in Grassmannians

https://doi.org/10.18255/1818-1015-2014-4-35-46

Abstract

In this article we study the Fano variety of lines on the complete intersection of the grassmannian G(n, 2n) with hypersurfaces of degrees d1 ..., di . A length l path on such a variety is a connected curve composed of l lines. The main result of this article states that the space of length l paths connecting any two given points on the variety is nonempty and connected if dj < n/4 . To prove this result we first show that the space of length n paths on the grassmannian G(n, 2n) that join two generic points is isomorphic to the direct product Fn ×Fn of spaces of full flags. After this we construct on Fn ×Fn a globally generated vector bundle E with a distinguished section s such that the zeros of s coincide with the space of length n paths that join x and y and lie in the intersection of hypersurfaces of degrees d1,...,dk. Using a presentation of E as a sum of linear bundles we show that zeros of its generic and, hence, any section form a non empty connected subvariety of Fn × Fn. Apart from its immediate geometric interest, this result will be used in our future work on generalisation of splitting theorems for finite rank vector bundles on ind-manifolds.

About the Author

S. M. Yermakova
P.G. Demidov Yaroslavl State University
Russian Federation
ассистент кафедры общей математики, Sovetskaya str., 14, Yaroslavl, 150000, Russia


References

1. Eisenbud D., Harris J. 3264 & All That Intersection. Theory in Algebraic Geometry. 2013. URL: http://isites.harvard.edu/fs/docs/icb.topic720403.files/book.pdf.

2. Barth W., Van de Ven A. On the geometry in codimension 2 in Grassmann manifolds // Lecture Notes in Math. 412. Springer-Verlag, 1974. P. 1–35.

3. Tyurin A. N. Vector bundles of finite rank over infinite varieties // Math. USSR. Izvestija. 1976. No 10. P. 1187–1204.

4. Sato E. On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties // J. Math. Kyoto Univ. 1977. No 17. P. 127–150.

5. Donin J., Penkov I. Finite rank vector bundles on inductive limits of grassmannians // IMRN. 2003. No 34. P. 1871–1887.

6. Penkov I., Tikhomirov A. S. Rank-2 vector bundles on ind-Grassmannians // Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, V II, Progr. Math. V. 270. Birkhaeuser, Boston-Basel-Berlin, 2009. P. 555–572.

7. Пенков И.Б., Тихомиров А.С. Тривиальность векторных расслоений на скрученных инд-грассманианах // Математический сборник. 2011. 202. No 1. С. 65–104 (English translation: Penkov I.B., Tikhomirov A.S. Triviality of vector bundles on twisted indGrassmannians // Sbornik: Mathematics. 2011. 202, No 1. P. 61–99).

8. Penkov I., Tikhomirov A.S. On the Barth–Van de Ven–Tyurin–Sato theorem // arXiv:1405.3897 math.AG].

9. Penkov I., Tikhomirov A.S. Linear ind-grassmannians // Pure and Applied Mathematics Quarterly. 2014. 10. Nо 1. arXiv: 1310.8058 [math.AG].

10. Hartshorne R. Algebraic Geometry. New York: Springer-Verlag, 1977.


Review

For citations:


Yermakova S.M. On the Variety of Paths on Complete Intersections in Grassmannians. Modeling and Analysis of Information Systems. 2014;21(4):35-46. (In Russ.) https://doi.org/10.18255/1818-1015-2014-4-35-46

Views: 806


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)