Preview

Modeling and Analysis of Information Systems

Advanced search

Center Manifold Method in the Asymptotic Integration Problem for Functional Differential Equations with Oscillatory Decreasing Coefficients. I

https://doi.org/10.18255/1818-1015-2014-3-5-34

Abstract

In this paper, we study the asymptotic integration problem in the neighborhood of infinity for a certain class of linear functional differential systems. We construct the asymptotics for solutions of the considered systems in the critical case. Using the ideas of the center manifold method, we show the existence of the so-called critical manifold that is positively invariant for trajectories of the initial system. We establish that the asymptotics for solutions of the system on this manifold defines the asymptotics for all solutions of the initial system. In the first part of this work, we propose an algorithm for an approximate construction of the critical manifold. Moreover, we establish the unique solvability for auxiliary algebraic problems that occur within the algorithm implementation.

About the Author

P. N. Nesterov
P.G. Demidov Yaroslavl State University
Russian Federation
канд. физ.-мат. наук, доцент, Sovetskaya str., 14, Yaroslavl, 150000, Russia


References

1. Беллман Р., Кук К.Л. Дифференциально-разностные уравнения. М.: Мир, 1967. (Bellman R., Cooke K.L. Differential-Difference equations. New York: Academic Press, 1963.)

2. Нестеров П.Н. Асимптотическое интегрирование одного класса систем функционально-дифференциальных уравнений // Вестник Нижегородского университета им. Н.И. Лобачевского. 2013. №1(3). С. 137–145. [Nesterov P.N. Asimptoticheskoe integrirovanie odnogo klassa sistem funktsional’no-differentsial’nykh uravneniy // Vestnik Nizhegorodskogo universiteta imeni N.I. Lobachevskogo. 2013. №1(3). P. 137–145 (in Russian)].

3. Нестеров П.Н. Метод усреднения в задаче асимптотического интегрирования систем с колебательно убывающими коэффициентами // Дифференциальные уравнения. 2007. Т. 43, №6. С. 731–742. (English transl.: Nesterov P.N. Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients // Differ. Equ. 2007. V. 43, No. 6. P. 745–756.)

4. Нестеров П.Н. Об асимптотике критических решений систем дифференциальных уравнений с колебательно убывающими коэффициентами // Моделирование и анализ информационных систем. 2011. Т. 18, №3. C. 21–41. (English transl.: Nesterov P.N. On asymptotics for critical solutions of systems of differential equations with oscillatory decreasing coefficients // Automatic Control and Computer Sciences. 2013. Vol. 47, No. 7. P. 500–515.)

5. Хейл Дж. Теория функционально-дифференциальных уравнений. М.: Мир, 1984. (Hale J.K. Theory of functional differential equations. New York: Springer-Verlag, 1977.)

6. Ai S. Asymptotic integration of delay differential systems // J. Math. Anal. Appl. 1992. Vol. 165. P. 71–101.

7. Ait Babram M., Hbid M.L., Arino O. Approximation scheme of a center manifold for functional differential equations // J. Math. Anal. Appl. 1997. Vol. 213. P. 554–572.

8. Arino O., Gyõri I. Asymptotic integration of delay differential systems // J. Math. Anal. Appl. 1989. Vol. 138. P. 311–327.

9. Arino O., Gyõri I., Pituk M. Asymptotically diagonal delay differential systems // J. Math. Anal. Appl. 1996. Vol. 204. P. 701–728.

10. Arino O., Hbid M.L., Ait Dads E. (Eds.) Delay differential equations and applications. Dordrecht: Springer, 2006.

11. Balachandran B., Kalm´ar-Nagy T., Gilsinn D.E. (Eds.) Delay differential equations: recent advances and new directions. New York: Springer, 2009.

12. Gyõri I., Pituk M. L²-Perturbation of a linear delay differential equation // J. Math. Anal. Appl. 1995. Vol. 195. P. 415–427.

13. Carr J. Applications of centre manifold theory. New York: Springer-Verlag, 1981.

14. Cassel J.S., Hou Z. Lp-Perturbation of linear functional differential equations // Monatsh. Math. 1999. Vol. 128. P. 211–226.

15. Castillo S., Pinto M. Levinson theorem for functional differential systems // Nonlinear Anal. 2001. Vol. 47. P. 3963–3975.

16. Castillo S., Pinto M. An asymptotic theory for nonlinear functional differential equations // Comput. Math. Appl. 2002. Vol. 44. P. 763–775.

17. Hale J., Verduyn Lunel S.M. Introduction to functional differential equations. Appl. Math. Sciences 99. New York: Springer-Verlag, 1993.

18. Kolmanovskii V., Myshkis A. Introduction to the theory and applications of functional differential equations. Dordrecht: Kluwer Academic Publishers, 1999.

19. Nesterov P. Asymptotic integration of functional differential systems with oscillatory decreasing coefficients // Monatsh. Math. 2013. Vol. 171, No. 2. P. 217–240.

20. Pituk M. The Hartman–Wintner theorem for functional differential equations // J. Differential Equations. 1999. Vol. 155. P. 1–16.

21. Pituk M. A Perron type theorem for functional differential equations // J. Math. Anal. Appl. 2006. Vol. 316. P. 24–41.

22. Pituk M. Asymptotic behavior and oscillation of functional differential equations // J. Math. Anal. Appl. 2006. Vol. 322. P. 1140–1158.


Review

For citations:


Nesterov P.N. Center Manifold Method in the Asymptotic Integration Problem for Functional Differential Equations with Oscillatory Decreasing Coefficients. I. Modeling and Analysis of Information Systems. 2014;21(3):5-34. (In Russ.) https://doi.org/10.18255/1818-1015-2014-3-5-34

Views: 899


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)