Preview

Modeling and Analysis of Information Systems

Advanced search

On tensor squares of irreducible representations of almost simple groups. I

Abstract

Almost simple SM_m-groups are considered. A group G is called a SM_m-group if
the tensor square of any irreducible representation is decomposed into the sum of its
irreducible representations with multiplicities not greater than m. In the first part of
this article we consider simple groups. It turned out that among them only groups L_2(q), q = 2^t, t > 1, are SM_2-groups.

About the Author

S. V. Polyakov
Ярославский государственный университет им. П.Г. Демидова
Russian Federation


References

1. Wigner E.P. On representations of finite groups // Amer. J. Math. 1941. Vol. 63. P. 57-63.

2. Gorenstein D. Finite groups. N.Y.: Harper and Row, 1968.

3. Carter R.W. Finite groups of Lie type. Conjugacy classes and complex characters. Willey, 1985.

4. Gallagher P.X. The number of conjugacy classes in a finite group // Math. Z. 1970. Vol. 118. P. 175-179.

5. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. Atlas of Finite Groups. Oxford: Clarendon Press, 1985. http://brauer.maths.qmul.ac.uk/Atlas/v3/

6. Macdonald I.G. Numbers of conjugacy classes in some finite classical groups // Bull. Austral. Math. Soc. 1981. Vol. 23, №1. P. 23-48.

7. Liebeck M., Pyber L. Upper bounds for the number of conjugacy classes of a finite group // J. Algebra, 1997. №198. P. 538-562.

8. Maroti A. Bounding the number of conjugacy classes of a permutation group // Journal of Group Theory. 2005. 8, №3. P. 273-289.

9. Кострикин А.И. Введение в алгебру, часть 3. Основные структуры алгебры. М.: Физ.-мат. лит., 2000.

10. Коуровская тетрадь. Нерешенные вопросы теории групп. Издание 16-е, дополненное, включающее Архив решенных задач. Новосибирск: ИМ СО РАН, 2006.

11. Казарин Л.С., Янишевский В.В. О конечных просто приводимых группах // Алгебра и анализ. 2007. Т. 19, № 6. С. 86-116.

12. Казарин Л.С., Чанков Е.И. Конечные просто приводимые группы разрешимы // Математический сборник. 2010. Т. 201, № 5. С. 27-40.

13. Kazarin L.S., Sagirov I.A. On the degrees of irreducible characters of finite simple groups // Proc. of the Steklov Inst. Math. Suppl. 2001. Vol. 2. P. 71-81.

14. The GAP Group, GAP - Groups, Algorithms and Programming, Version 4.4.10, Aachen, St. Andrews, 2008; http://www.gap-system.org


Review

For citations:


Polyakov S.V. On tensor squares of irreducible representations of almost simple groups. I. Modeling and Analysis of Information Systems. 2011;18(1):130-141. (In Russ.)

Views: 424


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)