Preview

Modeling and Analysis of Information Systems

Advanced search

Linear Interpolation on a Euclidean Ball in Rⁿ

https://doi.org/10.18255/1818-1015-2019-2-279-296

Abstract

For \(x^{(0)}\in{\mathbb R}^n, R>0\), by \(B=B(x^{(0)};R)\) we denote a Euclidean ball in \({\mathbb R}^n\) given by the inequality \(\|x-x^{(0)}\|\leq R\), \(\|x\|:=\left(\sum_{i=1}^n x_i^2\right)^{1/2}\). Put \(B_n:=B(0,1)\). We mean by \(C(B)\) the space of continuous functions \(f:B\to{\mathbb R}\) with the norm \(\|f\|_{C(B)}:=\max_{x\in B}|f(x)|\) and by \(\Pi_1\left({\mathbb R}^n\right)\) the set of polynomials in \(n\) variables of degree \(\leq 1\), i.e. linear functions on \({\mathbb R}^n\). Let \(x^{(1)}, \ldots, x^{(n+1)}\) be the vertices of \(n\)-dimensional nondegenerate simplex \(S\subset B\). The interpolation projector \(P:C(B)\to \Pi_1({\mathbb R}^n)\) corresponding to \(S\) is defined by the equalities \(Pf\left(x^{(j)}\right)=%f_j:=f\left(x^{(j)}\right).\) Denote by \(\|P\|_B\) the norm of \(P\) as an operator from \(C(B)\) into \(C(B)\). Let us define \(\theta_n(B)\) as minimal value of \(\|P\|\) under the condition \(x^{(j)}\in B\). In the paper, we obtain the formula to compute \(\|P\|_B\) making use of \(x^{(0)}\), \(R\), and coefficients of basic Lagrange polynomials of \(S\). In more details we study the case when \(S\) is a regular simplex inscribed into \(B_n\). In this situation, we prove that \(\|P\|_{B_n}=\max\{\psi(a),\psi(a+1)\},\) where \(\psi(t)=\frac{2\sqrt{n}}{n+1}\bigl(t(n+1-t)\bigr)^{1/2}+\bigl|1-\frac{2t}{n+1}\bigr|\) \((0\leq t\leq n+1)\) and integer \(a\) has the form \(a=\bigl\lfloor\frac{n+1}{2}-\frac{\sqrt{n+1}}{2}\bigr\rfloor.\) For this projector, \(\sqrt{n}\leq\|P\|_{B_n}\leq\sqrt{n+1}\). The equality \(\|P\|_{B_n}=\sqrt{n+1}\) takes place if and only if \(\sqrt{n+1}\) is an integer number. We give the precise values of \(\theta_n(B_n)\) for \(1\leq n\leq 4\). To supplement theoretical results we present computational data. We also discuss some other questions concerning interpolation on a Euclidean ball.

About the Authors

Mikhail V. Nevskii
P.G. Demidov Yaroslavl State University
Russian Federation

Doctor of Science.

Sovetskaya str., 14, Yaroslavl, 150003



Alexey Yu. Ukhalov
P.G. Demidov Yaroslavl State University
Russian Federation

PhD.

 

Sovetskaya str., 14, Yaroslavl, 150003



References

1. Nevskij M. V., “Inequalities for the norms of interpolating projections”, Modeling and Analysis of Information Systems, 15:3 (2008), 28-37, (in Russian).

2. Nevskij M.V., “On a certain relation for the minimal norm of an interpolational projection”, Modeling and Analysis of Information Systems, 16:1 (2009), 24-43, (in Russian).

3. English transl.: Nevskii M.V., “On a property of та-dimensional simplices”, Math. Notes, 87:4 (2010), 543-555.

4. Nevskii M.V., Geometricheskie ocenki v polinomialnoy interpolyacii, Yaroslavl: P. G. Demidov Yaroslavl State University, 2012, (in Russian).

5. Nevskii M.V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Modeling and Analysis of Information Systems, 24:1 (2017), 94-110, (in Russian).; English transl.: Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Aut. Control Comp. Sci., 51:7 (2017), 770-782.

6. Nevskii M. V., Ukhalov A. Yu., “On optimal interpolation by linear functions on an та-dimensional cube”, Modeling and Analysis of Information Systems, 25:3 (2018), 291-311, (in Russian).; English transl.: Nevskii M. V., Ukhalov A. Yu., “On optimal interpolation by linear functions on та-dimensional cube”, Aut. Control Comp. Sci., 52:7 (2018), 828842.

7. Nevskii M. V., “On some problems for a simplex and a ball in Rra”, Modeling and Analysis of Information Systems, 25:6 (2018), 680-691, (in Russian).

8. SzegO G., Orthogonal polynomials, New York: American Mathematical Society, 1959, (in English).

9. Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Moskva: Nauka, 1979, in Russian).

10. Hall M., Jr, Combinatorial theory, Blaisdall publishing company, Waltham (Massachusets) - Toronto - London, 1967, (in English).

11. Hedayat A., Wallis W.D., “Hadamard matrices and their applications”, The Annals of Statistics, 6:6 (1978), 1184-1238.

12. Horadam K.J., Hadamard matrices and their applications, Princeton University Press, 2007.

13. Hudelson M., Klee V., Larman D., “Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241 (1996), 519-598.

14. Nevskii M., Ukhalov A., “Perfect simplices in R5”, Beitrage zur Algebra und Geometrie / Contributions to Algebra and Geometry, 59:3 (2018), 501-521.

15. Wellin P., Essentials of programming in Mathematica, Cambridge University Press, 2016.

16. Wolfram S., An elementary introduction to the Wolfram Language, Wolfram Media, Inc., 2017.


Review

For citations:


Nevskii M.V., Ukhalov A.Yu. Linear Interpolation on a Euclidean Ball in Rⁿ. Modeling and Analysis of Information Systems. 2019;26(2):279-296. (In Russ.) https://doi.org/10.18255/1818-1015-2019-2-279-296

Views: 843


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)