Preview

Modeling and Analysis of Information Systems

Advanced search

Geometric Estimates in Interpolation on an n-Dimensional Ball

https://doi.org/10.18255/1818-1015-2019-3-441-449

Abstract

Suppose \(n\in {\mathbb N}\). Let \(B_n\) be a Euclidean unit ball in \({\mathbb R}^n\) given by the inequality \(\|x\|\leq 1\), \(\|x\|:=\left(\sum\limits_{i=1}^n x_i^2\right)^{\frac{1}{2}}\). By \(C(B_n)\) we mean a set of continuous functions \(f:B_n\to{\mathbb R}\) with the norm \(\|f\|_{C(B_n)}:=\max\limits_{x\in B_n}|f(x)|\). The symbol \(\Pi_1\left({\mathbb R}^n\right)\) denotes a set of polynomials in \(n\) variables of degree \(\leq 1\), i.e. linear functions upon \({\mathbb R}^n\). Assume that \(x^{(1)}, \ldots, x^{(n+1)}\) are vertices of an \(n\)-dimensional nondegenerate simplex \(S\subset B_n\). The interpolation projector \(P:C(B_n)\to \Pi_1({\mathbb R}^n)\) corresponding to \(S\) is defined by the equalities \(Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right).\) Denote by \(\|P\|_{B_n}\) the norm of \(P\) as an operator from \(C(B_n)\) on to \(C(B_n)\). Let us define \(\theta_n(B_n)\) as the minimal value of \(\|P\|_{B_n}\) under the condition \(x^{(j)}\in B_n\). We describe the approach in which the norm of the projector can be estimated from the bottom through the volume of the simplex. Let \(\chi_n(t):=\frac{1}{2^nn!}\left[ (t^2-1)^n \right] ^{(n)}\) be the standardized Legendre polynomial of degree \(n\). We prove that \(\|P\|_{B_n}\geq\chi_n^{-1}\left(\frac{vol(B_n)}{vol(S)}\right).\) From this, we obtain the equivalence \(\theta_n(B_n)\) \(\asymp\) \(\sqrt{n}\). Also we estimate the constants from such inequalities and give the comparison with the similar relations for linear interpolation upon the \(n\)-dimensional unit cube. These results have applications in polynomial interpolation and computational geometry.

About the Author

Mikhail V. Nevskii
P.G. Demidov Yaroslavl State University
Russian Federation
Doctor of Science


References

1. Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, Yaroslavl: P. G. Demidov Yaroslavl State University, 2012, (in Russian).

2. Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Aut. Control Comp. Sci., 51:7 (2017), 770–782.

3. Nevskii M. V., Ukhalov A. Yu., “On optimal interpolation by linear functions on an n-dimensional cube”, Aut. Control Comp. Sci., 52:7 (2018), 828–842.

4. Nevskii M. V., Ukhalov A. Yu., “Linear interpolation on a Euclidean ball in Rn”, Modeling and Analysis of Information Systems, 26:2 (2019), 279–296, (in Russian).

5. Szeg¨o G., Orthogonal polynomials, American Mathematical Society, New York, 1959, (in English).

6. Suetin P. K., Klassicheskie ortogonal’nye mnogochleny, Moscow: Nauka, 1979, (in Russian).

7. Fikhtengol’ts G. M., Kurs differencial’nogo i integral’nogo ischislenia. Tom 3, Moscow: Fizmatlit, 2001, (in Russian).

8. Fejes T´th L., Regular figures, New York: Macmillan/Pergamon, 1964.

9. Slepian D., “The content of some extreme simplices”, Pacific J. Math, 31 (1969), 795–808.

10. Vandev D., “A minimal volume ellipsoid around a simplex”, C. R. Acad. Bulg. Sci., 45:6 (1992), 37–40.


Review

For citations:


Nevskii M.V. Geometric Estimates in Interpolation on an n-Dimensional Ball. Modeling and Analysis of Information Systems. 2019;26(3):441-449. (In Russ.) https://doi.org/10.18255/1818-1015-2019-3-441-449

Views: 814


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)