On Properties of a Regular Simplex Inscribed into a Ball
https://doi.org/10.18255/1818-1015-2021-2-186-197
Abstract
Let $B$ be a Euclidean ball in ${\mathbb R}^n$ and let $C(B)$ be a space of continuos functions $f:B\to{\mathbb R}$ with the uniform norm $\|f\|_{C(B)}:=\max_{x\in B}|f(x)|.$ By $\Pi_1\left({\mathbb R}^n\right)$ we mean a set of polynomials of degree $\leq 1$, i.e., a set of linear functions upon ${\mathbb R}^n$. The interpolation projector $P:C(B)\to \Pi_1({\mathbb R}^n)$ with the nodes $x^{(j)}\in B$ is defined by the equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right)$, $j=1,\ldots, n+1$.The norm of $P$ as an operator from $C(B)$ to $C(B)$ can be calculated by the formula $\|P\|_B=\max_{x\in B}\sum |\lambda_j(x)|.$ Here $\lambda_j$ are the basic Lagrange polynomials corresponding to the $n$-dimensional nondegenerate simplex $S$ with the vertices $x^{(j)}$. Let $P^\prime$ be a projector having the nodes in the vertices of a regular simplex inscribed into the ball. We describe the points $y\in B$ with the property $\|P^\prime\|_B=\sum |\lambda_j(y)|$. Also we formulate some geometric conjecture which implies that $\|P^\prime\|_B$ is equal to the minimal norm of an interpolation projector with nodes in $B$. We prove that this conjecture holds true at least for $n=1,2,3,4$.
About the Author
Mikhail Viktorovich NevskiiRussian Federation
References
1. M. V. Nevskii, Geometricheskie Ocenki v Polinomial'noj Interpolyacii. Yaroslavl: P. G. Demidov Yaroslavl State University, 2012.
2. M. V. Nevskii and A. Y. Ukhalov, “Linear Interpolation on a Euclidean Ball in R<sup>n</sup>,” Modeling and Analysis of Information Systems, vol. 26, no. 2, pp. 279-296, 2019, doi: 10.18255/1818-1015-2019-2-279-296.
3. M. V. Nevskii and A. Y. Ukhalov, “On Optimal Interpolation by Linear Functions on an $n$-Dimensional Cube,” Modeling and Analysis of Information Systems, vol. 25, no. 3, pp. 291-311, 2018, doi: 10.18255/1818-1015-2018-3-291-311.
4. M. Nevskii and A. Ukhalov, “Perfect Simplices in R<sup>5</sup>,” Beitr. Algebra Geom., vol. 59, no. 3, pp. 501-521, 2018, doi: 10.1007/s13366-018-0386-6.
5. M. V. Nevskii, “On Some Problems for a Simplex and a Ball in R<sup>n</sup>,” Modeling and Analysis of Information Systems, vol. 25, no. 6, pp. 680-691, 2018, doi: 10.18255/1818-1015-2018-6-680-691.
6. M. V. Nevskii, “Geometric Estimates in Interpolation on an n-Dimensional Ball,” Modeling and Analysis of Information Systems, vol. 26, no. 3, pp. 441-449, 2019, doi: 10.18255/1818-1015-2019-3-441-449.
7. M. V. Nevskii, “Computation of the Longest Segment of a Given Direction in a Simplex,” Journal of Mathematical Sciences, vol. 203, no. 6, pp. 851-854, 2014.
8. F. John, “Extremum Problems with Inequalities as Subsidiary Conditions,” in Studies and essays presented to R. Courant on his 60th birthday (Jan. 8, 1948), New York: Interscience, 1948, pp. 187-204.
9. K. Ball, “Ellipsoids of Maximal Volume in Convex Bodies.” Sep 25, 1990.
10. K. Ball, “An Elementary Introduction to Modern Convex Geometry,” Math. Sci. Res. Inst. Publ., vol. 31, no. 1, pp. 1-58, 1997.
11. L. Fejes T'ot, Regular Figures. New York: Macmillan/Pergamon, 1964.
12. D. Slepian, “The Content of Some Extreme Simplices,” Pacific J. Math, vol. 31, pp. 795-808, 1969.
13. D. Vandev, “A Minimal Volume Ellipsoid around a Simplex,” C. R. Acad. Bulg. Sci., vol. 45, no. 6, pp. 37-40, 1992.
14. G. M. Fikhtengol'ts, Kurs Differencial'nogo i Integral'nogo Ischisleniya. Tom 3. Moscow: Fizmatlit, 2001.
15. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integraly i Ryady. Moscow: Nauka, 2002.
Review
For citations:
Nevskii M.V. On Properties of a Regular Simplex Inscribed into a Ball. Modeling and Analysis of Information Systems. 2021;28(2):186-197. (In Russ.) https://doi.org/10.18255/1818-1015-2021-2-186-197