Preview

Modeling and Analysis of Information Systems

Advanced search

A Uniform Asymptotical Upper Bound for the Variance of a Random Polytope in a Simple Polytope

https://doi.org/10.18255/1818-1015-2012-6-148-151

Abstract

The present paper contains a sketch of the proof of an upper bound for the variance of the number of hyperfaces of a random polytope when the mother body is a simple polytope. Thus we verify a weaker version of the result in [1] stated without a proof. The article is published in the author’s wording.

About the Author

A. Magazinov
Steklov Mathematical Institute of RAS; P.G. Demidov Yaroslavl State University; Международная лаборатория «Дискретная и вычислительная геометрия» им. Б. Н. Делоне на базе ЯрГУ
Russian Federation


References

1. B´ar´any I., Reitzner M. Central limit theorems for random polytopes in convex polytopes. Manuscript (2007).

2. Weil W., Wieacker J. A. Stochastic Geometry, in Handbook of Convex Geometry, vol. B, pp. 1391 – 1498, North-Holland, Amsterdam, 1993.

3. R´enyi A., Sulanke R. Uber die konvexe H¨ulle von ¨ n zuf¨allig gew¨ahlten Punkten. Z. Wahrsch. Verw. Geb., 2 (1963), 75 – 84.

4. B´ar´any I. Random polytopes, convex bodies and approximation, in Stochastic Geometry pp. 77 – 118, Springer-Verlag, Berlin, 2007.

5. Pardon J. Central limit theorems for uniform model random polygons. J. Theoret. Probab. 25 (2012), no. 3, 823 – 833.

6. Dam T., Sørensen J. B., Thomsen M. H. Spatial Point Processes. Models, Simulation and Statistical Inference, Aalborg univ., 1999.


Review

For citations:


Magazinov A. A Uniform Asymptotical Upper Bound for the Variance of a Random Polytope in a Simple Polytope. Modeling and Analysis of Information Systems. 2012;19(6):148-151. https://doi.org/10.18255/1818-1015-2012-6-148-151

Views: 872


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)