Preview

Modeling and Analysis of Information Systems

Advanced search

Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature

https://doi.org/10.18255/1818-1015-2012-6-161-169

Abstract

It is known that for each simplicial polyhedron P in 3-space there exists a monic polynomial Q depending on the combinatorial structure of P and the lengths of its edges only such that the volume of the polyhedron P as well as one of any polyhedron isometric to P and with the same combinatorial structure are roots of the polynomial Q. But this polynomial contains many millions of terms and it cannot be presented in an explicit form. In this work we indicate some special classes of polyhedra for which these polynomials can be found by a sufficiently effective algorithm which also works in spaces of constsnt curvature of any dimension.

About the Authors

D. I. Sabitov
Московский государственный университет им. М.В. Ломоносова
Russian Federation
ассистент механико-математического факультета


I. Kh. Sabitov
Московский государственный университет им. М.В. Ломоносова; Ярославский государственный университет им. П.Г. Демидова, Международная лаборатория "Дискретная и вычислительная геометрия" им. Б.Н. Делоне
Russian Federation

профессор;

научный сотрудник



References

1. Сабитов И.Х. Объемы многогранников. М.: Изд-во МЦНМО, 2009.

2. Сабитов И.Х. Объем многогранника как функция его метрики // Фундаментальная и прикладная математика. 1996. Т. 2, № 4. С. 1235–1246.

3. Connelly R., Sabitov I., Walz A. The Bellows Conjecture // Beitr¨age zur Algebra und Geometrie. 1997. V. 38, № 1. P. 1–10.

4. Гильберт Д, Кон-Фоссен С. Наглядная геометрия. М.: Наука, Главная редакция физико-математической литературы, 1981.


Review

For citations:


Sabitov D.I., Sabitov I.Kh. Volume Polynomials for Some Polyhedra in Spaces of Constant Curvature. Modeling and Analysis of Information Systems. 2012;19(6):161-169. (In Russ.) https://doi.org/10.18255/1818-1015-2012-6-161-169

Views: 781


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)