Some New Components of the Moduli Scheme MP3(2; -1; 2; 0) of Stable Coherent Torsion Free Sheaves of Rank 2 on P3
https://doi.org/10.18255/1818-1015-2012-2-5-18
Abstract
In this paper we consider Giseker-Maruyama moduli scheme M := MP3(2;¡1; 2; 0) of stable coherent torsion free sheaves of rank 2 with Chern classes c1 = -1, c2 = 2, c3 = 0 on 3-dimensional projective space P3. We will de¯ne two sets of sheaves M1 and M2 in M and we will prove that closures of M1 and M2 in M are irreducible components of dimensions 15 and 19, accordingly.
About the Author
M. A. ZavodchikovRussian Federation
ассистент кафедры геометрии
References
1. Hartshorne R. Sols I. Stable rank 2 vector bundles on P3 with c1 = ¡1; c2 = 2 (English) // J. Reine Angew. Math. 1981. 325. P. 145–152.
2. Meseguer J., Sols I., Stromme S. A. Compactification of a family of vector bundles on P3 (English) // 18th Scand. Congr. Math., Proc., Aarhus 1980, Prog. Math. 1981. 11. P. 474–494.
3. Hartshorne R. Stable reflexive sheaves (English) // Math. Ann. 1980. 254. P. 121–176.
4. Оконек К., Шнейдер М., Шпиндлер Х. Векторные расслоения на комплексных проективных пространствах. М.: Мир, 1984.
5. D. Huyberchts, M. Lehn. The Geometry of moduli spaces of sheaves. A Publication of the Max-Planck-Institut f¨ur Matematik, Bonn, 1997.
6. Chang M.-C. Stable rank 2 reflexive sheaves on P3 with small c2 and applications // Trans. Amer. Math. Soc. 1984. 284, 1. P. 57–89.
7. Maruyama M. Moduli of stable sheaves. II (English) // J. Math. Kyoto Univ. 1978. 18. P. 557–614.
8. Stromme S.-A. Ample Divisors on Fine Moduli Spaces on Projective Plane // Math. Z. 1984. 187. P. 405–423.
Review
For citations:
Zavodchikov M.A. Some New Components of the Moduli Scheme MP3(2; -1; 2; 0) of Stable Coherent Torsion Free Sheaves of Rank 2 on P3. Modeling and Analysis of Information Systems. 2012;19(2):5-18. (In Russ.) https://doi.org/10.18255/1818-1015-2012-2-5-18