Preview

Modeling and Analysis of Information Systems

Advanced search

Some New Components of the Moduli Scheme MP3(2; -1; 2; 0) of Stable Coherent Torsion Free Sheaves of Rank 2 on P3

https://doi.org/10.18255/1818-1015-2012-2-5-18

Abstract

In this paper we consider Giseker-Maruyama moduli scheme M := MP3(2;¡1; 2; 0) of stable coherent torsion free sheaves of rank 2 with Chern classes c1 = -1, c2 = 2, c3 = 0 on 3-dimensional projective space P3. We will de¯ne two sets of sheaves M1 and M2 in M and we will prove that closures of M1 and M2 in M are irreducible components of dimensions 15 and 19, accordingly.

About the Author

M. A. Zavodchikov
Ярославский государственный педагогический университет им. К.Д. Ушинского
Russian Federation
ассистент кафедры геометрии


References

1. Hartshorne R. Sols I. Stable rank 2 vector bundles on P3 with c1 = ¡1; c2 = 2 (English) // J. Reine Angew. Math. 1981. 325. P. 145–152.

2. Meseguer J., Sols I., Stromme S. A. Compactification of a family of vector bundles on P3 (English) // 18th Scand. Congr. Math., Proc., Aarhus 1980, Prog. Math. 1981. 11. P. 474–494.

3. Hartshorne R. Stable reflexive sheaves (English) // Math. Ann. 1980. 254. P. 121–176.

4. Оконек К., Шнейдер М., Шпиндлер Х. Векторные расслоения на комплексных проективных пространствах. М.: Мир, 1984.

5. D. Huyberchts, M. Lehn. The Geometry of moduli spaces of sheaves. A Publication of the Max-Planck-Institut f¨ur Matematik, Bonn, 1997.

6. Chang M.-C. Stable rank 2 reflexive sheaves on P3 with small c2 and applications // Trans. Amer. Math. Soc. 1984. 284, 1. P. 57–89.

7. Maruyama M. Moduli of stable sheaves. II (English) // J. Math. Kyoto Univ. 1978. 18. P. 557–614.

8. Stromme S.-A. Ample Divisors on Fine Moduli Spaces on Projective Plane // Math. Z. 1984. 187. P. 405–423.


Review

For citations:


Zavodchikov M.A. Some New Components of the Moduli Scheme MP3(2; -1; 2; 0) of Stable Coherent Torsion Free Sheaves of Rank 2 on P3. Modeling and Analysis of Information Systems. 2012;19(2):5-18. (In Russ.) https://doi.org/10.18255/1818-1015-2012-2-5-18

Views: 916


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)