Subword Complexes and Nil-Hecke Moves
https://doi.org/10.18255/1818-1015-2013-6-121-128
Abstract
About the Author
M. A. GorskyRussian Federation
Gubkina str., 8, Moscow, 119991, Russia;
Paris 7;
Paris Rive Gauche, Bât. Sophie Germain, 75205 Paris Cedex 13, France
References
1. Björner A., Brenti F. Combinatorics of Coxeter groups // Graduate Texts in Mathematics 231, Springer, 2005.
2. Buchstaber V. M., Volodin V. D. Combinatorial 2-truncated cubes and applications, in “Associahedra, Tamari Lattices, and Related Structures. Tamari Memorial Festschrift” // Progress in Mathematics, 2012, 299, P. 161–186.
3. Ceballos C., Labbé J. P., Stump C. Subword complexes, cluster complexes, and generalized multi-associahedra // Journal of Algebraic Combinatoric, to appear; arXiv:1108.1776, 2011.
4. Fomin S., Zelevinsky A., Y -systems and generalized associahedra. Annals of Math., 2003, 158, P. 977–1018.
5. Gorsky M. A. Subword complexes and edge subdivisions. arXiv preprint, arXiv:1305.5499.
6. Knutson A., Miller E. Groebner geometry of Schubert polynomials // Ann. of Math. (2), 2005, 161, No. 3, P. 1245–1318.
7. Knutson A., Miller E. Subword complexes in Coxeter groups // Advances in Mathematics, 2004, 184 (1), P. 161–176.
8. Pilaud V., Stump C. Brick polytopes of spherical subword complexes: A new approach to generalized associahedra. arXiv preprint, arXiv:1111.3349.
Review
For citations:
Gorsky M.A. Subword Complexes and Nil-Hecke Moves. Modeling and Analysis of Information Systems. 2013;20(6):121-128. https://doi.org/10.18255/1818-1015-2013-6-121-128