Preview

Modeling and Analysis of Information Systems

Advanced search

Subword Complexes and Nil-Hecke Moves

https://doi.org/10.18255/1818-1015-2013-6-121-128

Abstract

For a finite Coxeter group W, a subword complex is a simplicial complex associated with a pair (Q, ρ), where Q is a word in the alphabet of simple reflections, ρ is a group element. We describe the transformations of such a complex induced by nil-moves and inverse operations on Q in the nil-Hecke monoid corresponding to W. If the complex is polytopal, we also describe such transformations for the dual polytope. For W simply-laced, these descriptions and results of [5] provide an algorithm for the construction of the subword complex corresponding to (Q, ρ) from the one corresponding to (δ(Q), ρ), for any sequence of elementary moves reducing the word Q to its Demazure product δ(Q). The former complex is spherical or empty if and only if the latter one is empty. The article is published in the author’s wording.

About the Author

M. A. Gorsky
Steklov Mathematical Institute; Université Paris Diderot; Institut de Mathématiques de Jussieu
Russian Federation

Gubkina str., 8, Moscow, 119991, Russia;

Paris 7;

Paris Rive Gauche, Bât. Sophie Germain, 75205 Paris Cedex 13, France



References

1. Björner A., Brenti F. Combinatorics of Coxeter groups // Graduate Texts in Mathematics 231, Springer, 2005.

2. Buchstaber V. M., Volodin V. D. Combinatorial 2-truncated cubes and applications, in “Associahedra, Tamari Lattices, and Related Structures. Tamari Memorial Festschrift” // Progress in Mathematics, 2012, 299, P. 161–186.

3. Ceballos C., Labbé J. P., Stump C. Subword complexes, cluster complexes, and generalized multi-associahedra // Journal of Algebraic Combinatoric, to appear; arXiv:1108.1776, 2011.

4. Fomin S., Zelevinsky A., Y -systems and generalized associahedra. Annals of Math., 2003, 158, P. 977–1018.

5. Gorsky M. A. Subword complexes and edge subdivisions. arXiv preprint, arXiv:1305.5499.

6. Knutson A., Miller E. Groebner geometry of Schubert polynomials // Ann. of Math. (2), 2005, 161, No. 3, P. 1245–1318.

7. Knutson A., Miller E. Subword complexes in Coxeter groups // Advances in Mathematics, 2004, 184 (1), P. 161–176.

8. Pilaud V., Stump C. Brick polytopes of spherical subword complexes: A new approach to generalized associahedra. arXiv preprint, arXiv:1111.3349.


Review

For citations:


Gorsky M.A. Subword Complexes and Nil-Hecke Moves. Modeling and Analysis of Information Systems. 2013;20(6):121-128. https://doi.org/10.18255/1818-1015-2013-6-121-128

Views: 937


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)