Enumeration Degrees of the Bounded Sets
https://doi.org/10.18255/1818-1015-2022-2-104-114
Abstract
References
1. U. Andrews, H. Ganchev, R. Kuyper, S. Lempp, J. Miller, A. Soskova, and M. Soskova, “On cototality and the skip operator in the enumeration degrees”, Transactions of the American Mathematical Society, vol. 372, no. 3, pp. 1631-1670, 2019.
2. B. Solon and S. Rozhkov, “Enumeration degrees of the bounded total sets”, in International Conference on Theory and Applications of Models of Computation, Springer, 2006, pp. 737-745.
3. S. Rozhkov, “Properties of e-degrees of the bounded total sets”, Automatic Control and Computer Sciences, vol. 44, no. 7, pp. 452-454, 2010.
4. H. Rogers Jr, Theory of recursive functions and elfective computability. New York: McGraw-Hill, 1967.
5. M. G. Rosinas, “Chastichnie stepeni i r-stepeni”, Siberian Mathematical Journal, vol. 15, no. 6, pp. 1323-1331, 1974.
6. S. B. Cooper, “Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense”, The Journal of symbolic logic, vol. 49, no. 2, pp. 503-513, 1984.
7. M. G. Rosinas, “Operacia skachka dlja nekotorih vidov svodimosti”, VINITI Dep, pp. 3185-76,
8. K. McEvoy, “Jumps of quasi-minimal enumeration degrees”, The Journal of symbolic logic, vol. 50, no. 3, pp. 839-848, 1985.
9. J. Case, “Enumeration reducibility and partial degrees”, Annals of mathematical logic, vol. 2, no. 4, pp. 419-439, 1971.
Review
For citations:
Solon B.Y. Enumeration Degrees of the Bounded Sets. Modeling and Analysis of Information Systems. 2022;29(2):104-114. (In Russ.) https://doi.org/10.18255/1818-1015-2022-2-104-114