Preview

Modeling and Analysis of Information Systems

Advanced search

A Definition of Type Domain of a Parallelotope

https://doi.org/10.18255/1818-1015-2013-6-129-134

Abstract

Each convex polytope P = P(α) can be described by a set of linear inequalities determined by vectors p and right hand sides α(p). For a fixed set of vectors p, a type domain D(P) of a polytope P and, in particular, of a parallelotope P is defined as a set of parameters α(p) such that polytopes P(α) have the same combinatorial type as P for all α ∈ D(P).

In the second part of the paper, a facet description of zonotopes and zonotopal parallelotopes are given.

The article is published in the author’s wording.

About the Author

V. P. Grishukhin
Central Economics and Mathematics Institute RAS
Russian Federation

д-р физ.-мат. наук,

Nakhimovskii prosp., 47, Moscow, 117418, Russia



References

1. G.F. Voronoi, Nouvelles applications de paramètres continus á la théorie de forms quadratiques, Deuxième memoire, J. reine angew. Math. 134 (1908), 198–287, 136 (1909), 67–178.

2. M. Aigner, Combinatorial Theory, Springer-Verlag, 1979.

3. M. Deza, V. Grishukhin, Voronoi’s conjecture and space tiling zonotopes, Mathematika 51 (2004) 1–10.

4. M. Deza, V. Grishukhin, Properties of parallelotopes equivalent to Voronoi’s conjecture, Europ. J. Combinatorics 25 (2004) 517–533.

5. N.P. Dolbilin, Properties of faces of parallelohedra, Proc. Steklov Inst. of Math. 266 (2009) 112–126.

6. R.M. Erdahl, Zonotopes, Dicings, and Voronoi’s conjecture on Parallelohedra, Eur. J. Combin. 20 (1999) 527–549.

7. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G.H. Ziegler, Oriented Matroids, (Encyclopedia of Mathematics and its Applications 46) Cambridge Univ. Press (1999).


Review

For citations:


Grishukhin V.P. A Definition of Type Domain of a Parallelotope. Modeling and Analysis of Information Systems. 2013;20(6):129-134. https://doi.org/10.18255/1818-1015-2013-6-129-134

Views: 888


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)