On Homology Groups of a Subspace of Triangulations of the Two-Simplex with not More than 6 Subdivisional Boundary Vertices
https://doi.org/10.18255/1818-1015-2013-6-142-148
Abstract
We study homology groups of the space W˜₁(∇N ) of triangulations of the twodimensional simplex with vertices D₀D₁D₂ endowed with a boundary subdivision with not more than 6 vertices in case when this boundary subdivision is extended to the interior of the simplex without adding new interior vertices. As a result, we obtain a theorem about the homology groups Hn in cases n = 0, . . . , 5.
The article is published in the author’s wording.
About the Author
S. I. YablokovaRussian Federation
канд. физ.-мат. наук, доцент,
Sovetskaya str., 14, Yaroslavl, 150000, Russia
References
1. Yablokova S.I. Triangulyatsii dvumernogo simpleksa, vse vershyny kotoryh lezhat na ego granitse // Voprosy teorii grupp i gomologicheskoy algebry. Yaroslavl, 1994. S. 69 – 88 [in Russian: Яблокова С.И. Триангуляции двумерного симплекса, все вершины которых лежат на его границе // Вопросы теории групп и гомологической алгебры. Ярославль, 1994. С. 69 – 88].
2. Yablokova S.I. Gruppy gomology nekotoryh prostranstv triangulyasty // Matematika v Yaroslavskom Universitete. Yaroslavl, 2011. S. 207–217 [in Russian: Яблокова С.И. Группы гомологий некоторых пространств триангуляций // Математика в Ярославском университете. Ярославль, 2011. С. 207 – 217].
Review
For citations:
Yablokova S.I. On Homology Groups of a Subspace of Triangulations of the Two-Simplex with not More than 6 Subdivisional Boundary Vertices. Modeling and Analysis of Information Systems. 2013;20(6):142-148. https://doi.org/10.18255/1818-1015-2013-6-142-148