Классификация статей из средств массовой информации по категориям и релевантности предметной области
https://doi.org/10.18255/1818-1015-2022-3-266-279
Аннотация
Об авторах
Владислав Дмитриевич ЛарионовРоссия
Илья Вячеславович Парамонов
Россия
Список литературы
1. A. Hussain, G. Ali, F. Akhtar, Z. H. Khand, and A. Ali, “Design and analysis of news category predictor”, Engineering, Technology & Applied Science Research, vol. 10, no. 5, pp. 6380-6385, 2020.
2. G. Kaur and K. Bajaj, “News classification using neural networks”, Communications on applied electronics, vol. 5, no. 1, pp. 42-45, 2016.
3. P. Semberecki and H. Maciejewski, “Deep learning methods for subject text classification of articles”, in 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, 2017, pp. 357-360.
4. X. Luo, “Efficient English text classification using selected machine learning techniques”, Alexandria Engineering Journal, vol. 60, no. 3, pp. 3401-3409, 2021.
5. S. Vychegzhanin, E. Kotelnikov, and V. Milov, “Comparative analysis of machine learning methods for news categorization in Russian”, in CEUR Workshop Proceedings, vol. 2922, 2021, pp. 100-108.
6. N. A. Gordienko, “Klassifikaciya novostej s primeneniem metodov mashinnogo obucheniya i obrabotki estestvennogo yazyka”, in Innovacionnye resheniya social’nyh, ekonomicheskih i tekhnologicheskih problem sovremennogo obshchestva, in Russian, 2021, pp. 63-65.
7. E. N. Karuna and P. V. Sokolov, “Comparison of methods for automatic classification of Russian-language texts”, in Journal of Physics: Conference Series, vol. 1864, 2021, p. 012 117.
8. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding, 2018. arXiv: 1810.04805 [cs.CL].
9. F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning in Python”, the Journal of machine Learning research, vol. 12, pp. 2825-2830, 2011.
10. T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, 2013. arXiv: 1301.3781v3 [cs.CL].
11. R. Rˇ ehu˚rˇek and P. Sojka, “Software framework for topic modelling with large corpora”, in Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, 2010, pp. 45-50.
12. A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Je´gou, and T. Mikolov, Fasttext.zip: Compressing text classification models, 2016. arXiv: 1612.03651 [cs.CL].
13. K. S. Jones, “A statistical interpretation of term specificity and its application in retrieval”, Journal of documentation, vol. 28, no. 1, pp. 11-22, 1972.
14. T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners”, Advances in neural information processing systems, vol. 33, pp. 1877-1901, 2020.
15. T. Wolf, L. Debut, V. Sanh, et al., “Transformers: State-of-the-art natural language processing”, in Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations, 2020, pp. 38-45.
16. M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks”, Information Processing & Management, vol. 45, pp. 427-437, 2009.
Рецензия
Для цитирования:
Ларионов В.Д., Парамонов И.В. Классификация статей из средств массовой информации по категориям и релевантности предметной области. Моделирование и анализ информационных систем. 2022;29(3):266-279. https://doi.org/10.18255/1818-1015-2022-3-266-279
For citation:
Larionov V.D., Paramonov I.V. Classification of Articles from Mass Media by Categories and Relevance of the Subject Area. Modeling and Analysis of Information Systems. 2022;29(3):266-279. (In Russ.) https://doi.org/10.18255/1818-1015-2022-3-266-279