Preview

Modeling and Analysis of Information Systems

Advanced search

Closed Locally Minimal Networks on the Surfaces of Convex Polyhedra

https://doi.org/10.18255/1818-1015-2013-5-117-147

Abstract

Closed locally minimal networks can be viewed as “branching” closed geodesics. We study such networks on the surfaces of convex polyhedra and discuss the problem of describing the set of all convex polyhedra that have such networks. A closed locally minimal network on a convex polyhedron is an embedding of a graph provided that all edges are geodesic arcs and at each vertex exactly three adges meet at angles of 120∘ . In this paper, we do not deal with closed (periodic) geodesics. Among other results, we prove that the natural condition on the curvatures of a polyhedron that is necessary for the polyhedron to have a closed locally minimal network on its surface is not sufficient. We also prove a new stronger necessary condition. We describe all possible combinatorial structures and edge lengths of closed locally minimal networks on convex polyhedra. We prove that almost all convex polyhedra with vertex curvatures divisible by π/3 have closed locally minimal networks.

About the Author

N. P. Strelkova
M.V. Lomonosov Moscow State University; ЯрГУ им. П.Г. Демидова
Russian Federation

аспирант, Leninskie Gory, 1, Moscow, 119991, Russia;

лаборант Международной лаборатории “Дискретная и вычислительная геометрия” им. Б.Н. Делоне



References

1. Стрелкова Н. П. Устойчивость локально минимальных сетей // Труды семинара по векторному и тензорному анализу с их приложениями к геометрии, механике и физике. 2013. Т. 29. С. 148–170. (Strelkova N. P. Ustoychivost lokalno minimalnykh setey // Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike. 2013. V. 29. С. 148–170. [in Russian].)

2. Иванов А. О., Тужилин А. А. Теория экстремальных сетей. Москва; Ижевск: Институт компьютерных исследований, 2003. (Ivanov A. O., Tuzhilin A. A. Teoriya ekstremalnykh setey. Moskva-Izhevsk, Institut kompyuternykh issledovaniy, 2003 [in Russian]; Ivanov A. O., Tuzhilin A. A. Branching solutions to one-dimensional variational problems. World Scientific, Singapore, 2000)

3. Thurston W. P. Shapes of polyhedra and triangulations of the sphere // The Epstein birthday schrift, Geom. Topol. Monogr. 1998. V. 1. P. 511–549

4. Птицына И. В. Классификация замкнутых локально минимальных сетей на тетраэдрах // Матем. сб. 1994. Т. 185. № 5. С. 119–138. (English transl.: Ptitsyna I. V., Classification of closed minimal networks on tetrahedra, Sci. Sb. Math. 1995. V. 82. No. 1. P. 101–116.)

5. Стрелкова Н. П. Замкнутые локально минимальные сети на поверхностях тетраэдров // Матем. сб. 2011. Т. 202. № 1. С. 141–160. (English transl.: Strelkova N. P. Closed locally minimal nets on tetrahedra. 2011. V. 202. No. 1. P. 135–153. DOI : 10.1070/SM2011v202n01ABEH004141.)

6. Протасов В.Ю. Замкнутые геодезические на поверхности симплекса // Матем. сб. 2007. Т. 198. № 2. С. 103–120, (English transl.: Protasov V. Yu. Closed geodesics on the surface of a simplex // Sbornik: Mathematics. 2007. V. 198, No. 2. P. 243–260)

7. Александров А. Д. Выпуклые многогранники. Москва; Ленинград, 1950. (English transl.: Aleksandrov A. D. Convex Polyhedra. Springer-Verlag. Berlin, 2005.)

8. Стрелкова Н. П. Реализация плоских графов как замкнутых локально минимальных сетей на выпуклых многогранниках // Доклады РАН. 2010, Т. 435, № 4. С. 1–3. (English transl.: Strelkova N. P. Realization of plane graphs as closed locally minimal nets on convex polyhedra // Doklady Mathematics. 2010. V. 82, No. 3. P. 939–941.)

9. B. Aronov and J. O’Rourke Nonoverlap of the star unfolding // Discrete and Computational Geometry. 1992. V. 8. No 1. P. 219–250.

10. Melzak Z. A. On the problem of Steiner // Canad. Math. Bulletin. 1961. V. 4. P. 143–148.

11. Иванов А. О., Тужилин А. А. Геометрия множества минимальных сетей данной топологии с фиксированной границей // Изв. РАН. Сер. матем. 1997. Т. 61. № 6. С. 119–152. (English transl.: Ivanov A. O., Tuzhilin A. A. The geometry of minimal networks with a given topology and a fixed boundary // Izvestiya: Mathematics. 1997. V. 61. No. 6. P. 1231–1263.)


Review

For citations:


Strelkova N.P. Closed Locally Minimal Networks on the Surfaces of Convex Polyhedra. Modeling and Analysis of Information Systems. 2013;20(5):117-147. (In Russ.) https://doi.org/10.18255/1818-1015-2013-5-117-147

Views: 993


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)