О геометрическом подходе к оцениванию интерполяционных проекторов
https://doi.org/10.18255/1818-1015-2023-3-246-257
Аннотация
Об авторах
Михаил Викторович НевскийРоссия
Алексей Юрьевич Ухалов
Россия
Список литературы
1. M. V. Nevskii, Geometricheskie Ocenki v Polinomial'noj Interpolyacii. P. G. Demidov Yaroslavl State University, 2012.
2. M. V. Nevskii, “Inequalities for the norms of interpolation projectors,” Modeling and Analysis of Information Systems, vol. 15, no. 3, pp. 28–37, 2008.
3. M. V. Nevskii, “On a certain relation for the minimal norm of an interpolation projector,” Modeling and Analysis of Information Systems, vol. 16, no. 1, pp. 24–43, 2009.
4. M. V. Nevskii and A. Y. Ukhalov, “Linear interpolation on a Euclidean ball in $mathbb R^n$,” Modeling and Analysis of Information Systems, vol. 26, no. 2, pp. 279–296, 2019.
5. M. V. Nevskii and A. Y. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube,” Modeling and Analysis of Information Systems, vol. 25, no. 3, pp. 291–311, 2018.
6. A. Ukhalov, “Supplementary materials for the article "On a geometric approach to the estimation of interpolation projectors,’” Mendeley Data, V1, 2023, doi: 10.17632/snh5m99yxr.1.
7. P. Wellin, Essentials of Programming in Mathematica. Cambridge University Press, 2016.
8. S. Mangano, Mathematica Cookbook: Building Blocks for Science, Engineering, Finance, Music, and More. O'Reilly Media Inc., 2010.
9. S. Wolfram, An Elementary Introduction to the Wolfram Language. Wolfram Media, Inc., 2017.
10. D. E. King, “Dlib-ml: A Machine Learning Toolkit,” Journal of Machine Learning Research, vol. 10, pp. 1755–1758, 2009.
11. N. S. Bogomolova, “Kvadratichnaya interpolyaciya i zadacha o pogloshchenii treugol'nikom parabolicheskogo sektora,” in Put' v Nauku. Matematika. Tezisy Dokladov Vserossijskoy Molodezhnoi Konferencii, 2022, pp. 39–41.
12. S. Pashkovskij, Vychislitel'nye Primeneniya Mnogochlenov i Ryadov Chebysheva. Nauka, 1983.
Рецензия
Для цитирования:
Невский М.В., Ухалов А.Ю. О геометрическом подходе к оцениванию интерполяционных проекторов. Моделирование и анализ информационных систем. 2023;30(3):246-257. https://doi.org/10.18255/1818-1015-2023-3-246-257
For citation:
Nevskii M.V., Ukhalov A.Y. On a geometric approach to the estimation of interpolation projectors. Modeling and Analysis of Information Systems. 2023;30(3):246-257. (In Russ.) https://doi.org/10.18255/1818-1015-2023-3-246-257