Preview

Modeling and Analysis of Information Systems

Advanced search

On a geometric approach to the estimation of interpolation projectors

https://doi.org/10.18255/1818-1015-2023-3-246-257

Abstract

Suppose $\Omega$ is a closed bounded subset of ${\mathbb R}^n,$ $S$ is an $n$-dimensional non-degenerate simplex, $\xi(\Omega;S):=$ min {$\sigma\geqslant 1: \Omega\subset \sigma S$}. Here $\sigma S$ is the result of homothety of $S$ with respect to the center of gravity with coefficient $\sigma$. Let $d\geqslant n+1,$ $\varphi_1(x),\ldots,\varphi_d(x)$ be linearly independent monomials in $n$ variables, and $\varphi_1(x)\equiv 1,$ $\varphi_2(x)=x_1,\ \ldots, \varphi_{n+1}(x)=x_n.$ Put $\Pi:=$lin$(\varphi_1,\ldots,\varphi_d).$ The interpolation projector $P: C(\Omega)\to \Pi$ with a set of nodes $x^{(1)},\ldots, x^{(d)} \in \Omega$ is defined by equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right).$ Denote by $\|P\|_{\Omega}$ the norm of $P$ as an operator from $C(\Omega)$ to $C(\Omega)$ . Consider the mapping $T:{\mathbb R}^n\to {\mathbb R}^{d-1}$ of the form $T(x):=(\varphi_2(x),\ldots,\varphi_d(x)). $ We have $ \frac{1}{2}\left(1+\frac{1}{d-1}\right)\left(\|P\|_{\Omega}-1\right)+1 \leqslant \xi(T(\Omega);S)\leqslant \frac{d}{2}\left(\|P\|_{\Omega}-1\right)+1, $ where $S$ is a $(d-1)$-dimensional simplex with vertices $T\left(x^{(j)}\right).$ We discuss this and other relations for polynomial interpolation of functions continuous on a segment. Some results of numerical analysis are presented.

About the Authors

Mikhail V. Nevskii
P.G. Demidov Yaroslavl State University
Russian Federation


Alexey Y. Ukhalov
P.G. Demidov Yaroslavl State University
Russian Federation


References

1. M. V. Nevskii, Geometricheskie Ocenki v Polinomial'noj Interpolyacii. P. G. Demidov Yaroslavl State University, 2012.

2. M. V. Nevskii, “Inequalities for the norms of interpolation projectors,” Modeling and Analysis of Information Systems, vol. 15, no. 3, pp. 28–37, 2008.

3. M. V. Nevskii, “On a certain relation for the minimal norm of an interpolation projector,” Modeling and Analysis of Information Systems, vol. 16, no. 1, pp. 24–43, 2009.

4. M. V. Nevskii and A. Y. Ukhalov, “Linear interpolation on a Euclidean ball in $mathbb R^n$,” Modeling and Analysis of Information Systems, vol. 26, no. 2, pp. 279–296, 2019.

5. M. V. Nevskii and A. Y. Ukhalov, “On optimal interpolation by linear functions on an $n$-dimensional cube,” Modeling and Analysis of Information Systems, vol. 25, no. 3, pp. 291–311, 2018.

6. A. Ukhalov, “Supplementary materials for the article "On a geometric approach to the estimation of interpolation projectors,’” Mendeley Data, V1, 2023, doi: 10.17632/snh5m99yxr.1.

7. P. Wellin, Essentials of Programming in Mathematica. Cambridge University Press, 2016.

8. S. Mangano, Mathematica Cookbook: Building Blocks for Science, Engineering, Finance, Music, and More. O'Reilly Media Inc., 2010.

9. S. Wolfram, An Elementary Introduction to the Wolfram Language. Wolfram Media, Inc., 2017.

10. D. E. King, “Dlib-ml: A Machine Learning Toolkit,” Journal of Machine Learning Research, vol. 10, pp. 1755–1758, 2009.

11. N. S. Bogomolova, “Kvadratichnaya interpolyaciya i zadacha o pogloshchenii treugol'nikom parabolicheskogo sektora,” in Put' v Nauku. Matematika. Tezisy Dokladov Vserossijskoy Molodezhnoi Konferencii, 2022, pp. 39–41.

12. S. Pashkovskij, Vychislitel'nye Primeneniya Mnogochlenov i Ryadov Chebysheva. Nauka, 1983.


Review

For citations:


Nevskii M.V., Ukhalov A.Y. On a geometric approach to the estimation of interpolation projectors. Modeling and Analysis of Information Systems. 2023;30(3):246-257. (In Russ.) https://doi.org/10.18255/1818-1015-2023-3-246-257

Views: 267


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)