Preview

Modeling and Analysis of Information Systems

Advanced search

An Algorithm of (n, t)-Threshold Proxy Signature with an Arbitrator

https://doi.org/10.18255/1818-1015-2013-4-55-70

Abstract

The paper presents an (n, t)-threshold proxy signature scheme with an Arbitrator which enables an original signer to delegate the signature authority to sign a message on behalf of the original signer to proxy group P of n members. The original signer distributes the proxy key among the proxy group members in such a way that not less then t proxy signers and the Arbitrator can cooperatively sign messages on behalf of the original signer. Thus, for signing the document it is necessary to have agreements of not less then t members. The Arbitrator is a trusted third party. It receives the information from the t members and completes the calculation of the digital signature. A verifier can identify the original signer and the members of the proxy group P. The main feature is that n members of the proxy group can not calculate the proxy key and the original signer’s secret key.

About the Author

E. A. Tolyupa
P.G. Demidov Yaroslavl State University
Russian Federation

аспирант,

Sovetskaya str., 14, Yaroslavl, 150000, Russia



References

1. Mambo M., Usuda K., and Okamoto E. Proxy signatures: Delegation of the power to sign messages // IEICE Trans. Fundamentals. 1996. V. E79-A. No. 9. P. 1338–1353.

2. Mambo M., Usuda K., Okamoto E. Proxy signatures for delegating signing operation // Proc. of 3rd ACM Conference on Computer and Communications Security (CCS’96). ACM Press, 1996. P. 48–57.

3. Kim S., Park S., and Won D. Proxy signatures, revisited // Information and Communications Security (ICICS’97). LNCS 1334, Springer-Verlag, 1997. P. 223–232.

4. Lee B., Kim H., and Kim K. Strong proxy signature and its applications // Proceedings of the 2001 Symposium on Cryptography and Information Security (SCIS’01), Vol. 2/2. Oiso, Japan, Jan. 23-26, 2001. P. 603–608.

5. Кострикин А.И. Введение в алгебру. Основы алгебры: Учебник для вузов. М.: Физматлит, 1994. (Kostrikin A.I. Vvedenie v algebru. Osnovy algebry: Uchebnik dlya vuzov. M.: Fizmatlit, 1994 [in Russian].)

6. Pedersen T. A Threshold Cryptosystem without a Trusted Party // Eurocrypt 1991. LNCS 547. Springer-Verlag, 1991. P. 522–526.

7. Sun H. M. An efficient nonrepudiable threshold proxy signatures with known signers // Computer Communications. 1999. 22(8). P. 717–722.

8. Hwang M.-S., Lin I.-C., and Lu K.-F. A secure nonrepudiable threshold proxy signature scheme with known signers // International Journal of Informatica. 2000. 11(2). P. 1–8.

9. Hsu C.-L., Wu T.-S., and Wu T.-C. New nonrepudiable threshold proxy signature schemem with known signers // The Journal of Systems and Software. 2001. 58. P. 119–124.

10. Yang C.-Y., Tzeng S.-F. and Hwang M.-S. On the efficiency of nonrepudiable threshold proxy signatures with known signers // The Journal of Systems and Software. 2003. 22(9). P. 1–8.

11. Tzeng S.-F., Hwang M.-S., and Yang C.-Y. An improvement of nonrepudiable threshold proxy signature schemem with known signers // Computers & Security. 2004. 23. P. 174–178.


Review

For citations:


Tolyupa E.A. An Algorithm of (n, t)-Threshold Proxy Signature with an Arbitrator. Modeling and Analysis of Information Systems. 2013;20(4):55-70. (In Russ.) https://doi.org/10.18255/1818-1015-2013-4-55-70

Views: 1120


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)