Preview

Modeling and Analysis of Information Systems

Advanced search

Algorithm for constructing asymptotics of periodic solutions in laser models with a rapidly oscillating delay

https://doi.org/10.18255/1818-1015-2025-1-6-15

Abstract

The problem of stability of the equilibrium state in a laser system with fast oscillating coefficients is considered. A system averaged over fast oscillations and with a distributed delay is constructed. Critical cases in the problem of the stability of the equilibrium state are singled out. It is shown that the threshold value of the feedback coefficient at which the equilibrium state becomes unstable increases due to rapid oscillations compared to the corresponding value in the absence of modulation. In critical cases, normal forms are constructed – equations for the slowly varying amplitude of the periodic solutions. The conditions for the existence, stability and instability of cycles are revealed.

About the Authors

Elena V. Grigorieva
Belarus State Economic University
Russian Federation


Dmitry V. Glazkov
P.G. Demidov Yaroslavl State University
Russian Federation


Anna O. Tolbey
P.G. Demidov Yaroslavl State University
Russian Federation


References

1. A. Kittel, K. Pyragas, and R. Richter, “Prerecorded history of a system as an experimental tool to control chaos,” Physical Review E, vol. 50, no. 1, pp. 262–268, 1994, doi: 10.1103/PhysRevE.50.262.

2. K. Pyragas, “Control of chaos via an unstable delayed feedback controller,” Physical Review Letters, vol. 86, no. 11, pp. 2265–2268, 2001, doi: 10.1103/PhysRevLett.86.2265.

3. K. Pyragas, V. Pyragas, I. Z. Kiss, and J. L. Hudson, “Stabilizing and tracking unknown steady states of dynamical systems,” Physical Review Letters, vol. 89, no. 24, p. 244103, 2002, doi: 10.1103/PhysRevLett.89.244103.

4. A. Ahlborn and U. Parlitz, “Controlling dynamical systems using multiple delay feedback control,” Physical Review E, vol. 71, no. 1, p. 016206, 2005, doi: 10.1103/PhysRevE.72.016206.

5. H. G. Schuster and M. P. Stemmler, “Control of chaos by oscillating feedback,” Physical Review E, vol. 56, no. 6, pp. 6410–6417, 1997, doi: 10.1103/PhysRevE.56.6410.

6. A. Gjurchinovski and V. Urumov, “Variable-delay feedback control of unstable steady states in retarded time-delayed systems,” Physical Review E, vol. 81, no. 1, p. 016209, 2010, doi: 10.1103/PhysRevE.81.016209.

7. T. Jungling, A. Gjurchinovski, and V. Urumov, “Experimental time-delayed feedback control with variable and distributed delays,” Physical Review E, vol. 86, no. 4, p. 046213, 2012, doi: 10.1103/PhysRevE.86.046213.

8. A. V. Skripal, D. A. Usanov, V. A. Vagarin, and M. Y. Kalinkin, “Autodyne detection in a semiconductor laser as the external reflector is moved,” Technical Physics, vol. 44, pp. 66–68, 1999, doi: 10.1134/1.1259253.

9. J. Martin-Regalado, G. H. M. Tartwijk, S. Balle, and M. S. Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Physical Review A, vol. 54, no. 6, pp. 5386–5393, 1996, doi: 10.1103/PhysRevA.54.5386.

10. T. Yang, C. W. Wu, and L. O. Chua, “Cryptography based on chaotic systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, no. 5, pp. 469–472, 1997, doi: 10.1109/81.572346.

11. J.-P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by delayed feedback tunable laser diode,” Physical Review Letters, vol. 80, no. 10, pp. 2249–2252, 1998, doi: 10.1103/PhysRevLett.80.2249.

12. N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations. Delhi : Hindustan Publishing Corporation (India), 1961.

13. A. Stephenson, “On a new type of dynamical stability,” Memoirs and Proceedings of the Manchester Literary and Philosophical Society, vol. 52, no. 8, pp. 1–10, 1908.

14. J.-L. Chern, K. Otsuka, and F. Ishiyama, “Coexistence of two attractors in lasers with delayed incoherent optical feedback,” Optics Communications, vol. 96, no. 4--6, pp. 259–266, 1993, doi: 10.1016/0030-4018(93)90272-7.

15. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE Journal of Quantum Electronics, vol. 16, no. 3, pp. 347–357, 1980, doi: 10.1109/JQE.1980.1070479.

16. A. Levine, G. H. M. Tartwijk, D. Lenstra, and T. Erneux, “Diode lasers with optical feedback: Stability of the maximum gain mode,” Physical Review A, vol. 52, no. 5, pp. R3436–R3439, 1995, doi: 10.1103/PhysRevA.52.R3436.

17. E. V. Grigorieva, A. A. Kashchenko, and S. A. Kashchenko, Local analysis of the dynamics of distributed laser models. Moscow: LENAND, 2024.

18. E. Grigorieva, “Instabilities of periodic orbits in lasers with oscillating delayed feedback,” Nonlinear Phenomena in Complex Systems, vol. 4, no. 1, pp. 6–12, 2001.

19. Y. A. Mitropol'skii, The method of averaging in nonlinear mechanics. Kiev : Naukova Dumka, 1971.

20. Y. S. Kolesov, V. S. Kolesov, and I. I. Fedik, Avtokolebaniya v sistemah s raspredelennymi parametrami. Kiev : Naukova Dumka, 1979.


Review

For citations:


Grigorieva E.V., Glazkov D.V., Tolbey A.O. Algorithm for constructing asymptotics of periodic solutions in laser models with a rapidly oscillating delay. Modeling and Analysis of Information Systems. 2025;32(1):6-15. (In Russ.) https://doi.org/10.18255/1818-1015-2025-1-6-15

Views: 134


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)