Preview

Моделирование и анализ информационных систем

Расширенный поиск

Доминирующие множества с окрестностью для деревьев

https://doi.org/10.18255/1818-1015-2025-1-32-41

Аннотация

Подмножество $V' \subset V(G)$ образует $\varepsilon$-доминирующее множество графа G, если для любой вершины $v \in V \backslash V'$ найдется вершина $u \in V'$ такая, что длина кратчайшей цепи, соединяющей эти вершины $d(v,u)\leqslant \varepsilon$; $\delta_{\varepsilon}(G)$ — число вершин в минимальном $\varepsilon$-доминирующем множестве; $\delta_{\varepsilon}(G) = 1$ при $r(G)\leqslant \varepsilon \leqslant d(G)$; для $ \varepsilon < r(G)$ числа $\delta_{\varepsilon}(G) > 1$, вычисление $\delta_{1}(G)=\delta(G)$ является NP-полной задачей. В работе рассматривается класс деревьев $t_{d}^{\rho}$ диаметра $d$, степени внутренних вершин которых равны $\rho$. Приводятся конструктивные описания деревьев $t \in t_{d}^{\rho}$. Разработаны процедуры вычисления значений $\delta_{\varepsilon}(t)$ в диапазоне $1\leqslant \varepsilon < r (t)$. Установлены асимптотические оценки для $\delta_{\varepsilon}(t)$ и их доли от общего числа вершин деревьев $t \in t_{d}^{\rho}$ при $d \to \infty$. Приводятся вычислительные примеры.

Об авторе

Михаил Анатольевич Иорданский
Нижегородский государственный педагогический университет им. К. Минина; Нижегородский государственный университет им. Н.И. Лобачевского
Россия


Список литературы

1. M. A. Iordanski, “Constructive descriptions of graphs,” Discrete Analysis and Operations Research, vol. 3, no. 4, pp. 35–63, 1996.

2. M. A. Iordanski, Constructive graph theory and its applications. Cyrillic, 2016.

3. M. A. Iordanski, “Constructive Graph Theory: Generation Methods, Structure and Dynamic Characterization of Closed Classes of Graphs -- A survey.” 2020.

4. O. Ore, Theory of graphs. Nayka, Moscow, 1968.

5. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.

6. T. W. Haynes, S. T. Hedetniemi, and M. A. Henning, Topics in Domination in Graphs. Developments in Mathematics, vol. 64. Springer, 2020.

7. A. Meir and J. W. Moon, “Relations between packing and covering number of a tree,” Pacific Journal of Mathematics, vol. 61, no. 1, pp. 225–233, 1975.

8. R. Davila, C. Fast, M. A. Henning, and F. Kenter, “Lower bounds on the distance domination number of a graph,” Contributions to Discrete Mathematics, vol. 12, no. 2, pp. 11–21, 2017.

9. F. Tian and J. M. Xu, “A note on distanse domination numbers of graphs,” The Australasian Journal of Combinatorics, vol. 43, pp. 181–190, 2009.

10. M. A. Henning and N. Lichiardopol, “Distance domination in graphs with given minimum and maximum degree,” Journal of Combinatorial Optimization, vol. 34, pp. 545–553, 2017.

11. P. Dankelmann and D. Erwin, “Distance domination and generalized eccentricity in graphs with given minimum degree,” Jouranl of Graph Theory, vol. 94, no. 1, pp. 5–19, 2020, doi: 10.1002/jgt.22503.

12. J. Cyman, M. Lemanska, and J. Raczek, “Lower bound on the distance $k$-domination number of a tree,” Mathematica Slovaca, vol. 56, no. 2, pp. 235–243, 2006.

13. A. Klobucar, “On the $k$-dominating number of Cartesian products of two paths,” Mathematica Slovaca, vol. 55, no. 2, pp. 141–154, 2005.

14. E. Fata, S. L. Smith, and S. Sundaram, “Distributed dominating sets on grids,” in Proceedings of the American Control Conference, 2013, pp. 211–216.

15. C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient supercomputing,” IEEE Transactions on Computers, vol. C-34, pp. 892–901, 1985.

16. A. M. Rappoport, “Metric characteristics of communication network graphs,” Proceedings of the Institute of System Analysis of the Russian Academy Sciences, vol. 14, pp. 141–147, 2005.

17. V. A. Melentiev and V. I. Shubin, “On scalability of computing systems with compact topology,” Theoretical Applied Science , vol. 11, no. 43, pp. 164–169, 2016.

18. M. A. Iordanski, “Cloning of graphs,” in Proceedings of the XVIII International Conference on Problems of theoretical Cybernetics, 2017, pp. 108–110.

19. M. A. Iordanski, “On the complexity of graph synthesis using cloning operations,” in Proceedings of the XIII International seminar on Discrete mathematics and its applications, 2019, pp. 220–223.

20. M. A. Iordanski, “Cloning operations and the diameter of graphs,” Discrete Mathematics, vol. 34, no. 2, pp. 26–31, 2022.

21. M. A. Iordanski, “Scaling Graphs with Constraint diameter,” Discrete Mathematics, vol. 35, no. 4, pp. 46–57, 2023.


Рецензия

Для цитирования:


Иорданский М.А. Доминирующие множества с окрестностью для деревьев. Моделирование и анализ информационных систем. 2025;32(1):32-41. https://doi.org/10.18255/1818-1015-2025-1-32-41

For citation:


Iordanski M.A. Dominant sets with neighborhood for trees. Modeling and Analysis of Information Systems. 2025;32(1):32-41. (In Russ.) https://doi.org/10.18255/1818-1015-2025-1-32-41

Просмотров: 113


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)