Preview

Modeling and Analysis of Information Systems

Advanced search

Asymptotics of the Solution of the Bisingular Problem for a System of Linear Parabolic Equations. II

https://doi.org/10.18255/1818-1015-2013-2-121-128

Abstract

Suppose we are given a bisingular initial boundary-value problem for a system of parabolic equations that contains a small parameter ε² at the second derivative and √ ε at the first derivative with respect to the spatial variable. We prove an asymptotics of any order for the solution of the problem with respect to the small parameter, without using the joining of asymptotic expansions. To this end, we apply an asymptotic method of differential inequalities. The essence of the method is to use the formal asymptotics (given in the previous paper) for constructing lower and upper solutions of the problem. By modifying the last terms of order εⁿ⁄² in the partial sum of the formal asymptotics, we construct the lower and the upper solutions, between which the exact solution of the problem lies.

About the Author

M. V. Butuzova
M.V. Lomonosov Moscow State University
Russian Federation

физический факультет, научный сотрудник,

Leninskie Gory, Moscow, 119991, Russia



References

1. Бутузова М.В. Асимптотика решения бисингулярной задачи для системы линейных параболических уравнений. I // Моделирование и анализ информационных систем. 2013. Т 20, № 1. С. 5–17 (Butuzova M. V. Asymptotics of the Solution of Bisingular Problem for a System of Linear Parabolic Equations. I // MAIS. 2013. V. 20, № 1. P. 5–17 [in Russian]).

2. Pao C.V. Nonlinear parabolic and elliptic equations. Plenum Press, New York and London, 1992.


Review

For citations:


Butuzova M.V. Asymptotics of the Solution of the Bisingular Problem for a System of Linear Parabolic Equations. II. Modeling and Analysis of Information Systems. 2013;20(2):121-128. (In Russ.) https://doi.org/10.18255/1818-1015-2013-2-121-128

Views: 870


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)