Preview

Modeling and Analysis of Information Systems

Advanced search

Deformations of Planar Equilateral Polygons with a Constant Index

https://doi.org/10.18255/1818-1015-2013-1-138-159

Abstract

A carpenter’s rule problem is considered for the case of a self-intersecting planar polygon with additional restriction: the index (turning number) of the polygon should be preserved during deformation. We present a solution for equilateral polygons and state a problem for general ones.

About the Author

E. S. Zaputryaeva
Moscow State Pedagogical University
Russian Federation

аспирант,

107140, Russia, Moscow, Krasnoprudnaya st., 14



References

1. Connelly R., Demaine E., Rote G. Straightening polygonal arcs and convexifying polygonal cycles // Discrete and Computational Geometry. 2003. V. 30 (5). P. 205–239.

2. Lenhart W. J., Whitesides S. Reconfiguring closed polygonal chains in Euclidian d-space // Discrete and Computational Geometry. 1995. V. 13. P. 123–140.

3. Streinu I. A combinatorial approach to planar non-colliding robot arm motion planning // In ACM/IEEE Symposium on Foundations of Computer Science. 2000. P. 443–453.

4. Сабитов И.Х. Чему равна сумма углов многоугольника? // КВАНТ. 2001. № 3. С. 7–12. (Sabitov I. Kh. Chemu ravna summa uglov mnogougol’nika? // KVANT. 2001. No. 3. P. 7–12 [in Russian]).

5. Сабитов И.Х. Вокруг доказательства леммы Лежандра – Коши о выпуклых многоугольниках // Сибирский математический журнал. 2004. Т. 45, № 4. С. 892 – 919. (English transl.: Sabitov I. Kh. Around the Proof of the Legendre – Cauchy Lemma on Convex Polygons// Siberian Mathematical Journal. 2004. V. 45, No. 4. P. 740–762) .


Review

For citations:


Zaputryaeva E.S. Deformations of Planar Equilateral Polygons with a Constant Index. Modeling and Analysis of Information Systems. 2013;20(1):138-159. (In Russ.) https://doi.org/10.18255/1818-1015-2013-1-138-159

Views: 890


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)