Balls in Sequence Spaces
https://doi.org/10.18255/1818-1015-2012-2-109-114
Abstract
We introduce a new metric on a space of right-sided infinite sequences drawn from a finite alphabet. Emerging from a problem of entropy estimation of a discrete stationary ergodic process, the metric is important on its own part and exhibits some interesting properties. For example, the measure of a ball is discontinuous at every binary rational value of log r, where r is the radius.
About the Author
E. A. TimofeevRussian Federation
доктор физико-математических наук, профессор кафедры теоретической информатики
References
1. Deza M., Deza T. Encyclopedia of Distances, Springer, 2009.
2. Grassberger P. Estimating the information content of symbol sequences and efficient codes, IEEE Trans. Inform. Theory. 1989. V. 35. P. 669–675.
3. Kaltchenko A., Timofeeva N. Entropy Estimators with Almost Sure Convergence and an O(n¡1) Variance //Advances in Mathematics of Communications. 2008. V. 2, 1. P. 1–13.
4. Kaltchenko A., Timofeeva N., Rate of convergence of the nearest neighbor entropy estimator // AEU – International Journal of Electronics and Communications. 2010. 64, 1. P. 75–79.
5. Timofeev E.A. Statistical Estimation of measure invariants // St. Petersburg Math. J. 2006. 17, 3. P. 527–551.
6. Timofeev E.A. Bias of a nonparametric entropy estimator for Markov measures // Journal of Mathematical Sciences. 2011. 176, 2. P. 255–269.
Review
For citations:
Timofeev E.A. Balls in Sequence Spaces. Modeling and Analysis of Information Systems. 2012;19(2):109-114. (In Russ.) https://doi.org/10.18255/1818-1015-2012-2-109-114