Preview

Modeling and Analysis of Information Systems

Advanced search

On the Location of Some Characteristic Quasipolinomial Roots

https://doi.org/10.18255/1818-1015-2015-1-74-84

Abstract

The location of zeros of two characteristic quasi-polynomials arising from studying the differential equations with a retarded argument is considired. The first one originates from the mathematical model of electromagnetic oscillations generator with a delayed feedback, the second one — from the Lang-Kobayashi system that is a well-known mathematical model of a quantum generator. The D-partition figures are presented in a prameter space and possible critical cases are found out. The large delay case important for applications is considered. In this case, for quasi-polinomial roots obtained are the analytical dependencies on a value reciprocal to the delay, and uniform asymptotical formulas are constructed.

About the Authors

D. S. Glyzin
P.G. Demidov Yaroslavl State University
Russian Federation

канд. физ.-мат. наук

Sovetskaya str., 14, Yaroslavl, 150000, Russia



E. P. Kubyshkin
P.G. Demidov Yaroslavl State University
Russian Federation

доктор физ.-мат. наук, профессор

Sovetskaya str., 14, Yaroslavl, 150000, Russia



A. R. Moryakova
P.G. Demidov Yaroslavl State University
Russian Federation

аспирант

Sovetskaya str., 14, Yaroslavl, 150000, Russia



References

1. Неймарк Ю.И. Структура D-разбиения пространства квазиполиномов диаграммы Вышнеградского и Найквиста // Доклады АН СССР. 1948. Т.60. С. 1503–1506. [Neymark Yu.I. Struktura D-razbienia prostranstva quasipolinomov diagrammi Vishnegradskogo i Nyquista // Doklady AN SSSR. 1948. T. 60. C. 1503–1506 (in Russian).]

2. Свешников А.Г., Тихонов А.Н. Теория функций комплексного переменного. М.: Наука. 1979. 320с. [Sveshnikov A.G., Tikhonov A.N. The Theory of Functions of a Complex Variable. Translated from Russian by G. Yankovsky. Moscow, Russia: Mir Publ., 1974.]

3. Lang R., Kobayashi. Abundance of strange attractors // IEEE. J. Quantum Electron. 1980. 16(1). P. 347–355.

4. Grigorieva E.V., Haken H., Kaschenko S.A. Theory of quasi-periodicity in model of lasers with delayed optoelectronic feedback // Optics Communications. 1999. V. 165. P. 279–292.

5. Grigorieva E.V., Bestehorn M., Haken H., Kaschenko S.A. Order parameters for class-B lasers with a long time delayed feedback // Physica D. 2000. V. 145. P. 111–130.

6. Григорьева Е.В., Кащенко И.С., Кащенко С.А. Мультистабильность в модели лазера с большим запаздыванием // Модел. и анализ информ. систем. 2010. 17:2 C. 17–27. [Grigorieva E.V., Kaschenko I.S., Kaschenko S.A. Multistability in a laser model with large delay // Modeling and Analysis of Information Systems. 2010. V. 17, N 2. P. 17–27 (in Russian).]

7. Bellman R., Cooke K.L. Differential-Difference Equations. Academic Press. New York – London, 1963.


Review

For citations:


Glyzin D.S., Kubyshkin E.P., Moryakova A.R. On the Location of Some Characteristic Quasipolinomial Roots. Modeling and Analysis of Information Systems. 2015;22(1):74-84. (In Russ.) https://doi.org/10.18255/1818-1015-2015-1-74-84

Views: 979


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)