INVESTIGATION OF OSCILLATORY SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATIONS OF SECOND ORDER IN A CRITICAL CASE
https://doi.org/10.18255/1818-1015-2015-3-439-447
Abstract
We consider a differential-difference equation of second order of delay type, containing the delay of the function and its derivatives. Such equations occur in the modeling of electronic devices. The nature of the loss of the zero solution stability is studied. The possibility of stability loss related to the passing of two pairs of purely imaginary roots, that are in resonance 1:3, through an imaginary axis is shown. In this case bifurcating oscillatory solutions are studied. It is noted the existence of a chaotic attractor for which Lyapunov exponents and Lyapunov dimension are calculated. As an investigation techniques we use the theory of integral manifolds and normal forms method for nonlinear differential equations.
About the Authors
E. P. KubyshkinRussian Federation
A. R. Moryakova
Russian Federation
References
1. Неймарк Ю. И., “D-разбиение пространства квазиполиномов (к устойчивости линеаризованных распределенных систем”, ПММ, 13:4 (1949), 349–380; [Neymark Yu. I., “Drazbienie prostranstva kvazipolinomov (k ustoychivosti linearizovannykh raspredelennykh sistem”, PMM, 13:4 (1949), 349–380, (in Russian).]
2. Куликов А. Н., “О гладких инвариантных многообразиях полугруппы нелинейных операторов в банаховом пространстве”, Исследования по устойчивости и теории колебаний, ред. Ю. С. Колесова, ЯрГУ, Ярославль, 1976, 114–129; [Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineynykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoychivosti i teorii kolebaniy, ed. Yu. S. Kolesova, YarGU, Yaroslavl’, 1976, 114–129, (in Russian).]
3. Марсден Дж., Мак-Кракен М., Бифуркация рождения цикла и ее приложения, Мир, М., 1980, 368 с.; English transl.: Marsden J. E., McCracken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976.
4. Хейл Дж., Колебания в нелинейных системах, Наука, М., 1966; English transl.: Hale J. K., Oscillations in Nonlinear Systems, McGraw-Hill, N.Y., 1963.
5. Глызин Д. С., Глызин С. Д., Колесов А.Ю., Розов Н. Х., “Метод динамической перенормировки для нахождения максимального ляпуновского показателя хаотического аттрактора”, Дифференциальные уравнения, 41:2 (2005), 268–273; Glyzin D. S., Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differential Equations, 41:2 (2005), 284–289.
Review
For citations:
Kubyshkin E.P., Moryakova A.R. INVESTIGATION OF OSCILLATORY SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATIONS OF SECOND ORDER IN A CRITICAL CASE. Modeling and Analysis of Information Systems. 2015;22(3):439-447. (In Russ.) https://doi.org/10.18255/1818-1015-2015-3-439-447