Preview

Modeling and Analysis of Information Systems

Advanced search

Isomorphism of Compactifications of Vector Bundles Moduli: Nonreduced Moduli

https://doi.org/10.18255/1818-1015-2015-5-629-647

Abstract

We continue the study of the compactification of the moduli scheme for Gieseker-semistable vector bundles on a nonsingular irreducible projective algebraic surface S with polarization L, by locally free sheaves. The relation of main components of the moduli functor or admissible semistable pairs and main components of the Gieseker – Maruyama moduli functor (for semistable torsion-free coherent sheaves) with the same Hilbert polynomial on the surface S is investigated. The compactification of interest arises when families of Gieseker-semistable vector bundles E on the nonsingular polarized projective surface (S, L) are completed by vector bundles E on projective polarized schemes (S, L) of special form. The form of the scheme S, of its polarization L and of the vector bundle E is described in the text. The collection ((S, L), E) is called a semistable admissible pair. Vector bundles E on the surface (S, L) and E on schemes (S, L) are supposed to have equal ranks and Hilbert polynomials which are compute with respect to polarizations L and L, respectively. Pairs of the form ((S, L), E) named as S-pairs are also included into the class under the scope. Since the purpose is to study the compactification of moduli space for vector bundles, only families which contain S-pairs are considered. We build up the natural transformation of the moduli functor for admissible semistable pairs to the Gieseker – Maruyama moduli functor for semistable torsion-free coherent sheaves on the surface (S, L), with same rank and Hilbert polynomial. It is demonstrated that this natural transformation is inverse to the natural transformation built in the preceding paper and defined by the standard resolution of a family of torsion-free coherent sheaves with a possibly nonreduced base scheme. The functorial isomorphism constructed determines the scheme isomorphism of compactifications of moduli space for semistable vector bundles on the surface (S, L).

About the Author

N. V. Timofeeva
Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
Russian Federation
PhD


References

1. Тимофеева Н.В., “Компактификация в схеме Гильберта многообразия модулей стабильных 2-векторных расслоений на поверхности”, Матем. заметки, 82:5 (2007), 756

2. – 769; [Timofeeva N. V., “Compactification in Hilbert scheme of moduli scheme of stable 2-vector bundles on a surface”, Math. Notes, 82:5 (2007), 677–690].

3. Тимофеева Н.В., “О новой компактификации модулей векторных расслоений на поверхности”, Матем. сборник, 199:7 (2008), 103–122; [Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070].

4. Тимофеева Н.В., “О новой компактификации модулей векторных расслоений на поверхности, II”, Матем. сборник, 200:3 (2009), 95–118; [Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. II”, Sb. Math., 200:3 (2009), 405–427].

5. Тимофеева Н.В., “О вырождении поверхности в компактификации Фиттинга модулей стабильных векторных расслоений”, Матем. заметки, 90:1 (2011), 143– 150; [Timofeeva N. V., “On degeneration of surface in Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90 (2011), 142–148].

6. Тимофеева Н.В., “О новой компактификации модулей векторных расслоений на поверхности, III: Функториальный подход”, Матем. сборник, 202:3 (2011), 107–160; [Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465].

7. Тимофеева Н.В., “О новой компактификации модулей векторных расслоений на поверхности, IV: Неприведенная схема модулей”, Матем. сборник, 204:1 (2013), 139– 160; [Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. IV: Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153].

8. Тимофеева Н.В., “О новой компактификации модулей векторных расслоений на поверхности, V: Существование универсального семейства”, Матем. сборник, 204:3 (2013), 107–134; [Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. V: Existence of universal family”, Sb. Math., 204:3 (2013), 411–437].

9. Тимофеева Н.В., “Об одном изоморфизме компактификаций схемы модулей векторных расслоений”, Модел. и анализ информ. систем, 19:1 (2012), 37–50; [Timofeeva N. V., “On some isomorphism of compactifications of moduli scheme of vector bundles”, ArXiv:1103.5327v2].

10. Timofeeva N. V., “On a morphism of compactifications of moduli scheme of vector bundles”, Siberian Electronic Mathematical Reports, 12 (2015), 577–591.

11. Gieseker D., “On the moduli of vector bundles on an algebraic surface”, Annals of Math., 106 (1977), 45–60.

12. Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, Vieweg, 1997.

13. Мамфорд Д., Лекции о кривых на алгебраической поверхности, Мир, M., 1968; [Mumford D., Lectures on curves on an algebraic surface, Princeton Univ. Press, Princeton – New Jersey, 1966, Annals of Mathematical Studies, 59]

14. Атья М., Макдональд И., Введение в коммутативную алгебру, Мир, М., 1972; [Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publ. Co., Massachusets, 1969].

15. Matsumura H., Commutative ring theory, Cambridge Univ. Press, 1986, transl. from Japanese by M. Reid.

16. Хартсхорн Р., Алгебраическая геометрия, Мир, M., 1981; [Hartshorne R., Algebraic geometry, Springer, 1977, Graduate Texts in Mathematics, 52].

17. Newstead P. E., Lectures on introduction to moduli problems and orbit spaces, Springer- Verlag, Berlin–Heidelberg–New York, 1978, Publ. for the Tata Institute for Fundamental Research, Bombay. Lectures on mathematics and Physics, vol. 51.


Review

For citations:


Timofeeva N.V. Isomorphism of Compactifications of Vector Bundles Moduli: Nonreduced Moduli. Modeling and Analysis of Information Systems. 2015;22(5):629-647. (In Russ.) https://doi.org/10.18255/1818-1015-2015-5-629-647

Views: 1058


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)