Preview

Modeling and Analysis of Information Systems

Advanced search

Numerical Solution of the Poisson Equation in Polar Coordinates by the Method of Collocations and Least Residuals

https://doi.org/10.18255/1818-1015-2015-5-648-664

Abstract

A version of the method of collocations and least residuals is proposed for the numerical solution of the Poisson equation in polar coordinates on non-uniform grids. By introducing general curvilinear
coordinates the original Poisson equation is reduced to the Beltrami equation. A uniform grid is used in curvilinear coordinates. The grid non-uniformity in the plane of the original polar coordinates is ensured with the aid of functions which control the grid stretching and entering the formulas of the passage from polar coordinates to the curvilinear ones. The method was verified on two test problems having exact analytic solutions. The examples of numerical computations show that if the radial coordinate axis origin lies outside the computational region, the proposed method has the second order of accuracy. If the computational region contains the singularity, the application of a non-uniform grid along the radial coordinate enables an increase in the numerical solution accuracy by factors from 1.7 to 5 in comparison with the uniform grid case at the same number of grid nodes.

About the Authors

E. V. Vorozhtsov
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, Institutskaya str., 4/1, Novosibirsk, 630090, Russia
Russian Federation
Doctor of physical and mathematical sciences, professor


V. P. Shapeev
Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, Institutskaya str., 4/1, Novosibirsk, 630090, Russia Novosibirsk National Research University, Pirogov str., 2, Novosibirsk, 630090, Russia
Russian Federation
Doctor of physical and mathematical sciences, professor


References

1. Peskin C., “Numerical analysis of blood flow in the heart”, J. Comput. Phys., 25 (1977), 220–252.

2. Gibou F., Fedkiw R., Cheng L.-T., Kang M., “A second-order-accurate symmetric discretization of the poisson equation on irregular domains”, J. Comput. Phys., 176 (2002), 205–227.

3. Gibou F., Fedkiw R., “A fourth order accurate discretization for the laplace and heat equations on arbitrary domains, with applications to the stefan problem”, J. Comput. Phys., 202 (2005), 577–601.

4. Johansen H., Colella P., “A cartesian grid embedded boundary method for poisson’s equation on irregular domains”, J. Comput. Phys., 147 (1998), 60–85.

5. Шапеев А.В., Шапеев В.П., “Разностные схемы повышенной точности для решения эллиптических уравнений в области с криволинейной границей”, Журн. вычисл. матем. и матем. физ., 40:2 (2000), 223–232; English transl.: Shapeev A. V., Shapeev V. P., “Difference schemes of increased order of accuracy for solving elliptical equations in domain with curvilinear boundary”, Computat. Math. and Math. Phys., 40:2 (2000), 213–221.

6. Беляев В.В., Шапеев В.П., “Метод коллокаций и наименьших квадратов на адаптивных сетках в области с криволинейной границей”, Вычисл. технологии, 5:4 (2000), 12-–21; (Belyaev V. V., Shapeev V. P., “Metod kollokatsiy i naimenshih kvadratov na adaptivnyh setkah v oblasti s krivolineynoi granitsey”, Vychislitelnye tehnologii, 5:4 (2000), 12–21.)

7. Popinet S., “Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries”, J. Comput. Phys., 190 (2003), 572–600.

8. Chen H., Min C., Gibou F., “A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids”, J. Sci. Computing, 31:1/2 (2007), 19–60.

9. Swartztrauber P. N., Sweet R. A., “The direct solution of the discrete Poisson equation on a disc”, SIAM J. Numer. Anal., 10 (1973), 900–907.

10. Lai M.-C., Lin W.-W., Wang W., “A fast spectral/difference method without pole conditions for Poisson-type equations in cylindrical and spherical geometries”, IMA J. Numer. Anal., 22:4 (2002), 537–548.

11. Lai M.-C., “A simple compact fourth-order Poisson solver on polar geometry”, J. Comput. Phys., 182 (2002), 337–345.

12. Ворожцов Е.В., “Аналитическое и численное исследование течения газа в кожухе с вращающимся диском”, Вычислит. методы и программирование, 10:2 (2009), 162– 176; (Vorozhtsov E. V., “Analytic and Numerical Investigation of Gas Flow in a Casing with Rotating Disc”, Vychisl. Metody Programm., 10:2 (2009), 162–176, [in Russian].)

13. Слепцов А.Г., “Коллокационно-сеточное решение эллиптических краевых задач”, Моделирование в механике, 5(22):2 (1991), 101–126; (Sleptsov A. G., “Kollokatsionno-setochnoe reshenie ellipticheskih kraevyh zadach”, Modelirovanie v mekhanike, 5(22):2

14. (1991), 101–126, [in Russian].)

15. Verzicco R., Orlandi P., “A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates”, J. Comput. Phys., 123:2 (1996), 402–414.

16. Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical Grid Generation: Foundations and Applications, North-Holland, New York, 1985, 483 pp.

17. Knupp P., Steinberg S., Fundamentals of Grid Generation, CRC Press, Boca Raton, 1994, 286 pp.

18. Borges L., Daripa P., “A fast parallel algorithm for the Poisson equation on a disk”, J. Comput. Phys., 169 (2001), 151–192.

19. Ray R. K., Kalita J. C., “A transformation-free HOC scheme for incompressible viscous flows on nonuniform polar grids”, Int. J. Numer. Methods in Fluids, 62 (2010), 683–708.

20. Семин Л.Г., Слепцов А.Г., Шапеев В.П., “Метод коллокаций–наименьших квадратов для уравнений Стокса”, Вычисл. технологии, 1:2 (1996), 90–98; (Semin L. G., Sleptsov A. G., Shapeev V. P., “Metod kollokatsiy–naimenshih kvadratov dlia uravneniy Stoksa”, Vychislitelnye tehnologii, 1:2 (1996), 90–98, [in Russian].)

21. Исаев В.И., Шапеев В.П., “Варианты метода коллокаций и наименьших квадратов повышенной точности для численного решения уравнений Навье–Стокса”, Ж. вычисл. матем. и матем. физ., 50:10 (2010), 1758–1770; (English transl.: Isaev V. I., Shapeev V. P., “High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations”, Computat. Math. and Math. Phys., 50:10 (2010), 1670–1681.)

22. Исаев В.И., Шапеев В.П., “Метод коллокаций и наименьших квадратов повышенной точности для решения уравнений Навье–Стокса”, Докл. Академии наук, 442:4 (2012), 442–445; (English transl.: Isaev V. I., Shapeev V. P., “High-order accurate collocations and least squares method for solving the Navier - Stokes equations”, Dokl. Math., 85 (2012), 71–74.)

23. Shapeev V. P., Vorozhtsov E. V., “CAS application to the construction of the collocations and least residuals method for the solution of 3D Navier–Stokes equations”, LNCS, 8136, eds. Gerdt V. P., Koepf W., Mayr E. W., Vorozhtsov E. V., Springer, Heidelberg, 2013, 381–392.

24. Шапеев В.П., Ворожцов Е.В., Исаев В.И., Идимешев С.В., “Метод коллокаций и наименьших невязок для трехмерных уравнений Навье–Стокса”, Вычислительные методы и программирование, 14:3 (2013), 306–322; (Shapeev V. P., Vorozhtsov E. V., Isaev V. I., Idimeshev S. V., “The Method of Collocations and Least Residuals for Three- dimensional Navier–Stokes Equations”, Vychisl. Metody Programm., 14:3 (2013), 306–322, [in Russian].)

25. Шапеев В.П., Ворожцов Е.В., “Применение систем компьютерной алгебры для построения метода коллокаций и наименьших невязок решения трехмерных уравнений Навье-Стокса”, Моделирование и анализ информационных систем, 21:5 (2014), 131–147; (Shapeev V. P., Vorozhtsov E. V., “Application of Computer Algebra Systems to the Construction of the Collocations and Least Residuals Method for Solving the 3D Navier–Stokes Equations”, Modeling and Analysis of Information Systems, 21:5 (2014), 131–147, [in Russian].)

26. Shapeev V. P., Vorozhtsov E. V., “CAS application to the construction of the collocations and least residuals method for the solution of the Burgers and Korteweg–de Vries–Burgers equations”, LNCS, 8660, eds. Gerdt V. P., Koepf W., Mayr E. W., Vorozhtsov E. V., Springer, Heidelberg, 2014, 432–446.

27. Исаев В.И., Шапеев В.П., Еремин С.А., “Исследование свойств метода коллокации и наименьших квадратов решения краевых задач для уравнения Пуассона и уравнений Навье–Стокса”, Вычислительные технологии, 12:3 (2007), 53–70; (Isaev V. I., Shapeev V. P., Eremin S. A., “Issledovanie svoistv metoda kollokatsii i naimenshih kvadratov resheniya kraevyh zadach dlia uravneniya Puassona i uravneniy Navie–Stoksa”, Vychislitelnye tehnologii, 12:3 (2007), 53–70, [in Russian].)

28. Ferziger J. H., Pericґ M., Computational Methods for Fluid Dynamics, 3rd Edition, Springer-Verlag, Berlin, 2002, 423 pp.

29. Schwarz H. A., “UЁber einen GrenzuЁbergang durch alternierendes Verfahren”, Vierteljahrs-schrift der naturforschenden Gesellschaft in ZuЁrich, 15 (1870), 272–286.

30. Golub G. H., Van Loan C. F., Matrix Computations, 3rd Edition, Johns Hopkins University Press, Baltimore, 1996, 694 pp.


Review

For citations:


Vorozhtsov E.V., Shapeev V.P. Numerical Solution of the Poisson Equation in Polar Coordinates by the Method of Collocations and Least Residuals. Modeling and Analysis of Information Systems. 2015;22(5):648-664. (In Russ.) https://doi.org/10.18255/1818-1015-2015-5-648-664

Views: 1217


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)