Preview

Modeling and Analysis of Information Systems

Advanced search

Asymptotic Formula for the Moments of Takagi Function

https://doi.org/10.18255/1818-1015-2016-1-5-11

Abstract

Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx), 
where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0  xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ᝘(1) − lnπ n2 ln 2  + 1 2n2 + 2 n2 ln 2 φ(n) + O(n−2.99), where φ(x) = ᝨ kᡘ=0 Γ ᝈ2πik  ln 2 ᣸ ζ ᡸ2πik ln 2  ᡸ x−2lπni2k .

About the Author

E. A. Timofeev
Yaroslavl State University, Sovetskaya str., 14, Yaroslavl, 150000, Russia
Russian Federation
P.G. Demidov


References

1. Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008.

2. Flajolet P., Gourdon X., Dumas P., “Mellin transforms and asymptotics: Harmonic sums”, Theoretical Computer Science, 144:1–2 (1995), 3–58.

3. Jeffrey C. Lagarias, “The Takagi function and its properties”, RIMS Koˆkyuˆroku Bessatsu, B34 (2012), 153–189.

4. Pieter C. Allaart, Kiko Kawamura, “The Takagi Function: a Survey”, Real Anal. Exchange, 37:1 (2011), 1–54.

5. De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 285–298.

6. Kairies H.-H., Darsow W. F., Frank M. J., “Functional equations for a function of van der Waerden type”, Rad. Mat., 4:2 (1988), 361–374.

7. Oberhettinger F., Tables of Mellin Transforms, Springer–Verlag, New York, 1974.

8. Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley & Sons, New York, 2001.

9. Gradstein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Academic Press, 1994.


Review

For citations:


Timofeev E.A. Asymptotic Formula for the Moments of Takagi Function. Modeling and Analysis of Information Systems. 2016;23(1):5-11. (In Russ.) https://doi.org/10.18255/1818-1015-2016-1-5-11

Views: 1285


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)