Asymptotic Formula for the Moments of Takagi Function
https://doi.org/10.18255/1818-1015-2016-1-5-11
Abstract
Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by T(x) = ∞ ᢘ k=0 2−nρ(2nx),
where ρ(x) = min k∈Z |x − k|. The moments of Takagi function are defined as Mn = ᝈ 1 0 xnT(x) dx. The main result of this paper is the following: Mn = lnn − Γ(1) − lnπ n2 ln 2 + 1 2n2 + 2 n2 ln 2 φ(n) + O(n−2.99), where φ(x) = ᝨ kᡘ=0 Γ ᝈ2πik ln 2 ζ ᡸ2πik ln 2 ᡸ x−2lπni2k .
About the Author
E. A. TimofeevRussian Federation
P.G. Demidov
References
1. Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008.
2. Flajolet P., Gourdon X., Dumas P., “Mellin transforms and asymptotics: Harmonic sums”, Theoretical Computer Science, 144:1–2 (1995), 3–58.
3. Jeffrey C. Lagarias, “The Takagi function and its properties”, RIMS Koˆkyuˆroku Bessatsu, B34 (2012), 153–189.
4. Pieter C. Allaart, Kiko Kawamura, “The Takagi Function: a Survey”, Real Anal. Exchange, 37:1 (2011), 1–54.
5. De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 285–298.
6. Kairies H.-H., Darsow W. F., Frank M. J., “Functional equations for a function of van der Waerden type”, Rad. Mat., 4:2 (1988), 361–374.
7. Oberhettinger F., Tables of Mellin Transforms, Springer–Verlag, New York, 1974.
8. Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley & Sons, New York, 2001.
9. Gradstein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Academic Press, 1994.
Review
For citations:
Timofeev E.A. Asymptotic Formula for the Moments of Takagi Function. Modeling and Analysis of Information Systems. 2016;23(1):5-11. (In Russ.) https://doi.org/10.18255/1818-1015-2016-1-5-11