Preview

Modeling and Analysis of Information Systems

Advanced search

Solution Continuation on a Discontinuity Set

https://doi.org/10.18255/1818-1015-2016-1-12-22

Abstract

The movement of an object characterized by ordinary differential equations (ODE) with discontinuous right-hand sides along the surface of a gap is called a sliding mode. It is required to find the connection of the right-slip characteristics of the system (the system to continue the solution on the surface of the gap). The article prompted a sequel based on the solution of the averaged optimization. It is shown that for the known examples of methods for solving optimization averaged lead to results coinciding with the method of A.F. Filippov and allow to extend these techniques to a wide class of multidimensional problems. Optimality conditions set forth averaged nonlinear programming and examples of their use in the case of ordinary and degenerate solutions.

About the Author

A. M. Tsirlin
Program Systems Institute of RAS Petra 1 str., 4a, Veskovo Jaroslavskoy, 152020, Russia
Russian Federation

Prof,



References

1. Bernardo M. di, Kowalczyk P., Nordmark A., “Sliding bifurcations: a novel mechanism for the sudden onset 0f of chaos in dry friction oscillators”, Int. J. Bif.Chaos, 2003, № 10, 2935–2948.

2. Edwards C., Spurgeon S. K., Sliding Mode Control, Teylor and Francis, 1998.

3. Haek O., “Discontinuous differential equations”, J. Differential Equations, 1979, № 2, 149– 170.

4. Jefrrey M. R., “Dynamics at a switcing intersection hierarchy,isonomy, and multiple-sliding”, Physica D, 2014, № 1, 34–45.

5. Jefrrey M. R., “Dynamimics at a switching intersection: hierarchy, isonomy, and multiple–

6. sliding”, SIADS, 2014, № 3, 1082–1105.

7. Piltz S. H. , Porter M. A., Maini P. K., “Prey switching with a linear preference trade-off”, SIAM J. Appl. Math., 2014, № 2, 658–682.

8. Sotomayor J., Teixeira M. A., “Regularization of diskontinuos vector fields”, Proceedings of the International Conference on Differential Equations (Lisboa), 1996, 207–223.

9. Teixeira M. A., Silva P. R. da, “Regularization and singular perturbation techniques for non-smooth systems”, Physica D, 2012, № 22, 1948–1955.

10. Kuznetsiv Yu. A., Rinaldi S., Gragani A., “One-parametr bifurcations in planar Filippov systems”, Int. J. Bif. Chaos, 2003, № 13, 2157–2188.

11. Varius A., “Special issue on dynamics and bifurcations of nonsmooth systems”, Physica, 2012, № 22, 1825–2082.

12. Уткин В.И., “Короткий комментарий к методу А.Ф. Филиппова продолжения решения на границе разрыва”, АиТ, 2015, № 5, 165–174; Utkin V. I., “Brief Comments for the Continuation Method by A.F. Filippov for Solution Continuation on a Discontinuity Set”,

13. Autom. Remote Control, 2015, № 5, 933–942.

14. Филиппов А.Ф., “Дифференциальные уравнения с разрывной правой частью”, Мат. сборник, 1960, 99–128; [Filippov A. F., “Differentsialnye uravneniya s razryvnoy pravoy chastyu”, Mat. sbornik, 1960, 99–128, (in Russian).]

15. Filippov A. F., Differential Equations with Discontinuous Righhand Sides, Kluwer Academic Publ., Dortrecht, 1988, (Russian, 1985).

16. Уткин В.И., Скользящие режимы в задачах оптимизации и управления, Наука, М., 1981; [Utkin V. I., Skolzyashchie rezhimy v zadachakh optimizatsii i upravleniya, Nauka, M., 1981, (in Russian).]

17. Utkin V. I., “Variable structure systems with sliding modes”, IEEE Tras. Automat. Contr., 1977, № 22.

18. Utkin V. I., Sliding modes in control and optimization, Springer–Verlag, 1992.

19. Неймарк Ю.И., “О скользящем режиме релейных систем автоматического регулирования”, АиТ, 1957, № 1; [Neymark J. I., “O skolzjashem regime releynix sistem avtomatisheskogo regulirovanija”, Avtomatika i telemekhanika, 1957, № 1, (in Russian).]

20. Цыпкин Я.З., Теория систем автоматического регулирования, Гостехиздат, М., 1955; [Zipkin J. Z., Teorija sistem avtomatisheskogo regulirovanija, Gostexizdat, M., 1955, (in Russian).]

21. Цирлин А.М., Методы усредненной оптимизации и их приложения, Физматлит, М., 1977; [Tsirlin A. M., Metody usrednennoy optimizatsii i ikh prilozheniya, Fizmatlit, M., 1977, (in Russian).]

22. Розоноэр Л.И., Цирлин А.М., “Оптимальное управление термодинамическими системами”, АиТ, 1983, № 1–3; Rozonoer L. I., Tsirlin A. M., “Optimal control of thermodynamic systems”, Autom. Remote Control., 1983, № 1–3.


Review

For citations:


Tsirlin A.M. Solution Continuation on a Discontinuity Set. Modeling and Analysis of Information Systems. 2016;23(1):12-22. (In Russ.) https://doi.org/10.18255/1818-1015-2016-1-12-22

Views: 960


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1818-1015 (Print)
ISSN 2313-5417 (Online)