Asymptotics, Stability and Region of Attraction of a Periodic Solution to a Singularly Perturbed Parabolic Problem in Case of a Multiple Root of the Degenerate Equation
https://doi.org/10.18255/1818-1015-2016-3-248-258
Abstract
For a singularly perturbed parabolic problem with Dirichlet conditions we prove the existence of a solution periodic in time and with boundary layers at both ends of the space interval in the case that the degenerate equation has a double root. We construct the corresponding asymptotic expansion in a small parameter. It turns out that the algorithm of the construction of the boundary layer functions and the behavior of the solution in the boundary layers essentially differ from that ones in case of a simple root. We also investigate the stability of this solution and the corresponding region of attraction.
About the Authors
V. F. ButuzovRussian Federation
119991, Moscow, Leninskie Gory, MSU, faculty of physics, Professor
N. N. Nefedov
Russian Federation
119991, Moscow, Leninskie Gory, MSU, faculty of physics, Professor
L. Recke
Germany
Professor
K. Schneider
Germany
Professor
References
1. A.B. Vasil’eva, V. F. Butuzov, Asymptotic methods in the theory of singular perturbations, in Russian, Vyss. Shkola, Moscow, 1990.
2. A. B. Vasil’eva, V. F. Butuzov, N. N. Nefedov, “Contrast structures in singularly perturbed problems (in Russian)”, Fundamentalnaja i prikladnaja matematika, 4:3 (1998), 799-851.
3. V. F. Butuzov, “On periodic solutions of singularly perturbed parabolic problems in the case of multiple roots of the degenerate equation, in Russian”, Zh. Vych. Math. Math. Phys., 51:1 (2011), 44-55.
4. V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “On a singularly perturbed initial value problem in the case of a double root of the degenerate equation”, Nonlinear Analysis, 83 (2013), 1-11. DOI:10.1016/j.na.2013.01.013.
5. V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and stability of solutions with periodically moving weak internal layers”, J. Math. Anal. Appl., 348:1 (2008), 508-517. DOI:10.1016/j.jmaa.2008.07.040.
6. V. F. Butuzov, N. N. Nefedov, L. Recke, K.R. Schneider, “Region of attraction of a periodic solution to a singularly perturbed parabolic problem”, J. Math. Anal. Appl., 91:7 (2012), 1265-1277.
7. V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Periodic solutions with a boundary layer of reaction.diffusion equations with singularly perturbed Neumann boundary conditions”, Int. J. Bif. Chaos, 24:8 (2014), 1440019. DOI: http://dx.doi.org/10.1142/S0218127414400197.
8. P. Hess, Periodic-parabolic boundary value problems and positivity, Pitman Research Notes in Mathematics Series, 247, Longman Scientific and Technical, Harlow, 1991.
9. C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992.
Review
For citations:
Butuzov V.F., Nefedov N.N., Recke L., Schneider K. Asymptotics, Stability and Region of Attraction of a Periodic Solution to a Singularly Perturbed Parabolic Problem in Case of a Multiple Root of the Degenerate Equation. Modeling and Analysis of Information Systems. 2016;23(3):248-258. (In Russ.) https://doi.org/10.18255/1818-1015-2016-3-248-258